
AllFusion Endevor®
Change Manager

Implementation Guide
4.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2002

 2002 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1. Basic Concepts . 1-1
1.1 Overview . 1-2

1.1.1 What is Endevor . 1-2
1.1.2 What Can You Do with Endevor? . 1-2

1.2 Implementing for Source, Output, or Configuration Management 1-4
1.3 The Software Life Cycle . 1-5

1.3.1 The Endevor Life Cycle . 1-5
1.3.2 Life Cycle Requirements . 1-5
1.3.3 The Endevor Sample Application . 1-6
1.3.4 Basic Operations . 1-6
1.3.5 Integration Stage Operations . 1-7

1.4 Endevor Logical Structure . 1-8
1.4.1 Using the Inventory Structure . 1-8
1.4.2 Environment . 1-8
1.4.3 Stage . 1-9
1.4.4 System . 1-9
1.4.5 Subsystem . 1-9
1.4.6 Type . 1-10
1.4.7 Element . 1-11
1.4.8 Element Classification . 1-11
1.4.9 More About Elements . 1-12

1.5 Endevor Libraries . 1-13
1.5.1 Where to Allocate Your Libraries . 1-14

1.6 Working with Elements . 1-16
1.6.1 Endevor Actions and Availability . 1-16
1.6.2 Actions by Job Function . 1-17
1.6.3 Creating Executable Forms of Elements 1-18
1.6.4 Correlating Source with Executables 1-18
1.6.5 Packages . 1-18

1.7 Security . 1-19
1.7.1 Data Set Security . 1-19
1.7.2 Functional Security . 1-19

Chapter 2. Implementation and the Organization 2-1
2.1 Overview . 2-2
2.2 Organizational Considerations . 2-3

2.2.1 Accessing Receptiveness to Change . 2-3
2.2.2 Developing a Strategy . 2-3

2.3 Selecting an Implementation Team . 2-5

Contents iii

2.3.1 Required Technical Knowledge . 2-5
2.3.2 Required Organizational Involvement 2-5
2.3.3 Public Relations Requirements . 2-6

2.4 Laying the Groundwork . 2-7
2.4.1 Prepare a Presentation . 2-7
2.4.2 Tailor the Presentation . 2-7

2.5 Make the Presentation . 2-8
2.5.1 Introducing Endevor to an Organization 2-8
2.5.2 After the Presentation . 2-9

2.6 Using a Pilot Application . 2-10
2.6.1 Characteristics of the Pilot Application 2-10

2.7 Building Momentum . 2-11
2.8 Summary . 2-12

Chapter 3. Implementing Endevor . 3-1
3.1 Overview . 3-2

3.1.1 Endevor Implementations . 3-2
3.1.2 Assumptions . 3-2
3.1.3 The Software Life Cycle . 3-2

3.2 Implementation Alternatives . 3-3
3.2.1 A Phased Implementation . 3-3
3.2.2 A Full Implementation . 3-3

3.3 Implementing for Source Management . 3-4
3.3.1 What's Involved? . 3-4

3.4 Step 1: Define Your Software Life Cycle 3-5
3.4.1 Decide Stages for Endevor Control . 3-5
3.4.2 Define Environments . 3-5
3.4.3 Define the Map . 3-6
3.4.4 "Normal" Development Procedure . 3-6
3.4.5 Quick Fix or Emergency Procedure . 3-7
3.4.6 Mapping for Parallel Development . 3-7
3.4.7 Define Master Control Files . 3-7
3.4.8 Environment Implementation Checklist 3-8

3.5 Step 2: Analyze the Inventory . 3-9
3.6 Step 3: Define the Logical Structure . 3-10

3.6.1 Implement the Logical Structure . 3-10
3.6.2 Define Systems . 3-11
3.6.3 Define Subsystems . 3-11
3.6.4 Define Types . 3-11
3.6.5 Type Naming Conventions . 3-11
3.6.6 Verifying the Definitions . 3-12

3.7 Step 4: Define the Physical Structure . 3-13
3.7.1 Naming Conventions . 3-13
3.7.2 Using Symbolics to Define Endevor Libraries 3-13
3.7.3 Occurrence . 3-14
3.7.4 Sizing . 3-14
3.7.5 Format . 3-14
3.7.6 Element Storage Formats . 3-15
3.7.7 Where Libraries Are Defined . 3-16
3.7.8 More About Base and Delta Libraries 3-16
3.7.9 Backup and Recovery . 3-16

iv Implementation Guide

3.8 Step 5: Define CCIDs (Optional) . 3-17
3.8.1 CCID Definition Data Set . 3-17

3.9 Step 6: Enable Package Processing . 3-18
3.9.1 Set Up a Naming System . 3-18
3.9.2 Define and Allocate a Package Data Set 3-18
3.9.3 Enable Component Validation . 3-19
3.9.4 Approver Groups . 3-19
3.9.5 What to Do Next . 3-19

3.10 Implementing for Output Management 3-20
3.11 Step 7: Define and Allocate Output Libraries 3-21

3.11.1 Output Library Information . 3-21
3.11.2 More About Output Libraries . 3-22
3.11.3 Output Library Allocation . 3-22

3.12 Step 8: Define Processors . 3-23
3.12.1 Writing Processors . 3-23
3.12.2 Processor Groups and Types . 3-23
3.12.3 Managing Processors . 3-23
3.12.4 Determining Type Processing Sequence 3-23
3.12.5 Sample Processors . 3-23
3.12.6 What to Do Next . 3-24

3.13 Implementing for Configuration Management 3-25
3.14 Step 9: Enable ACM . 3-26
3.15 Final Implementation Steps . 3-27
3.16 Step 10: Enable Security . 3-28
3.17 Step 11: Load the Inventory . 3-29

3.17.1 Overview . 3-29
3.17.2 Enable the ACM Baseline . 3-29

3.18 Step 12: Provide Internal Training . 3-30
3.19 Step 13: Go into Production . 3-31

Appendix A. Upgrading to Endevor 4.0 . A-1
A.1 New Features . A-2
A.2 Changes for Endevor 4.0 . A-3
A.3 Recommendations for Endevor 4.0 . A-4

Glossary . X-1

Index . X-13

Contents v

vi Implementation Guide

 Chapter 1. Basic Concepts

Chapter 1. Basic Concepts 1-1

1.1 Overview

 1.1 Overview

This guide introduces basic concepts for AllFusion Endevor Change Manager
(formerly known as Endevor for OS/390, and hereafter referred to as simply Endevor)
and explains how to perform everyday tasks that are important for system
administrators to be familiar with before implementing Endevor. This guide is part of
a comprehensive documentation set that fully describes the features and functions of
Endevor. For a complete list of Endevor manuals, see the PDF Table of Contents file
in the PDF directory, or the Bookmanager Bookshelf file in the Books directory.

This guide contains information about Endevor from Computer Associates and related
products on the OS/390 and z/OS operating systems. The Endevor documentation set
describes procedures and, in some cases, JCL, for the OS/390 environment. This same
procedure and JCL are applicable for the z/OS environment.

This chapter introduces basic Endevor concepts. You should be familiar with these
concepts before implementing Endevor.

■ Implementing for Source, Output, or Configuration Management

■ The Software Life Cycle

■ Endevor Logical Structure

 ■ Endevor Libraries

■ Working with Elements

 ■ Security

1.1.1 What is Endevor

Endevor is an integrated set of management tools that is used to automate, control, and
monitor your software development life cycle. Endevor is implemented and run under
z/OS and OS/390, within the TSO ISPF environment, and in batch.

1.1.2 What Can You Do with Endevor?

Using Endevor, you can do the following:

■ Compare and track your changes against production automatically, creating an
online change history. This speeds up the debugging process and enables you to
always know what was changed, by whom, and why.

■ Prevent conflicting changes to the same system component.

■ Browse and manipulate all components relating to an application from a single
screen, saving you time and ensuring that changes are complete.

■ Create executables automatically.

■ Ensure that the source, executable, and any other form (for example, listings) of
an element correspond.

1-2 Implementation Guide

1.1 Overview

■ Apply the same procedures (including automating compiles or performing impact
analyses and standards checking) to any component type, thereby simplifying this
process.

■ Put change packages and approvals online, eliminating the need for change-related
paperwork.

■ View or retrieve prior levels of any element.

■ Report on element definition, content, and change history.

■ Enforce change control procedures.

Chapter 1. Basic Concepts 1-3

1.2 Implementing for Source, Output, or Configuration Management

1.2 Implementing for Source, Output, or Configuration
Management

Endevor provides different levels of functionality.

See Chapter 3, “Implementing Endevor” on page 3-1 for step-by-step instructions on
implementing each level of functionality.

Level of Functionality Description

Inventory management This function creates and maintains the Master
Control File definitions. All implementations of
Endevor use inventory management. (This level
of functionality is standard with Endevor.)

Source management This function manages element source in base
and delta libraries. All implementations of
Endevor use source management. (This level of
functionality is standard with Endevor.)

Output management This function manages the outputs created by
Endevor processors in source output, output,
listing, load, and object libraries. (This level of
functionality is optional with Endevor.)

Configuration management This function assures that executables include the
current versions of all input components, and
tracks changes to input components over time.
(This level of functionality is optional with
Endevor.)

1-4 Implementation Guide

1.3 The Software Life Cycle

1.3 The Software Life Cycle

Endevor allows you to automate and control the movement of software through your
software life cycle.

Software life cycles are site-specific. A representative life cycle might consist of the
five phases shown below. Note, however, that Endevor can be implemented to adapt to
any requirements of the software life cycle.

■ Development, where programs originate and are developed

■ Test, where programs are unit tested

■ QA, where applications are system tested

■ Integration, where fixes are applied to production code (This stage may also be
known as emergency)

■ Production, where production applications are stored

1.3.1 The Endevor Life Cycle

Four of the phases above can map to stages in the Endevor life cycle:

Note: For the remainder of this guide, the Endevor life cycle stage IDs will be used.

Phase Endevor Stage Name Endevor Stage ID

Test Unittest UT

QA Quality Assurance QA

Integration Integration INT

Production Production PRD

1.3.2 Life Cycle Requirements

Many sites use a four-stage life cycle for normal development activities. Therefore, a
typical non-Endevor life cycle might contain the following stages:

In addition, many sites have a stage for handling quick fix (or emergency) or problem
resolution situations without disrupting existing development and QA activities. This is
the integration stage.

At other sites, program development takes place outside of Endevor. In this situation,
a site may place the last three stages of the normal development life cycle—UT, QA,

DEV UT QA PRD

Chapter 1. Basic Concepts 1-5

1.3 The Software Life Cycle

and PRD—under the control of Endevor. The site then adds the quick fix
stage—INT—to the life cycle, creating the four-stage life cycle shown below:

These are the four stages of the Endevor life cycle that is used in the Endevor sample
application.

UT QA INT PRD

1.3.3 The Endevor Sample Application

You can (and, if you are a new site, should) use the sample application as a guide to
implement Endevor. The sample application is included on the installation tape. See
the Installation Guide for information about working with the sample application.

Implementing Endevor uses the sample application in its step-by-step explanation of
the implementation process.

 1.3.4 Basic Operations

Normal change procedures include the following:

■ Retrieving elements from production to a development library

■ Making changes to elements

■ Adding or updating elements into the test stage

■ Moving elements to QA

■ Moving elements back into production

The following diagram shows normal change procedures in a software life cycle.

1-6 Implementation Guide

1.3 The Software Life Cycle

1.3.5 Integration Stage Operations

Integration stage procedures include the following:

■ Retrieving elements from production

■ Making changes to elements

■ Adding or updating elements into the emergency stage

■ Optionally, moving elements to production

Note: If you are dealing with an emergency fix, you may want the emergency
libraries concatenated in front of your regular production environments, in your
processors.

The following diagram illustrates emergency change procedures in a software life
cycle.

Chapter 1. Basic Concepts 1-7

1.4 Endevor Logical Structure

1.4 Endevor Logical Structure

Endevor helps manage the software life cycle by providing a consistent and flexible
logical structure for classifying software inventory. There are six components to this
inventory structure: environments, stages, systems, subsystems, types, and elements.
Environments, stages, systems, subsystems, and types are defined by the Endevor
administrator. Users act on elements. These terms are defined on the following pages.

1.4.1 Using the Inventory Structure

The Endevor inventory structure allows a user to:

■ Work with program modules without having to know where they are physically
located or how they are compiled.

■ List all the program components that make up an application, regardless of type.

■ Determine the location(s) of an element simply by entering the element name on a
display screen.

■ Act on a cross-section of your program inventory. For example, Endevor allows
you to list all COBOL code in your shop, or promote an entire new release of the
payroll application with a single command.

These are only some of the ways you can use an inventory structure to your
advantage.

 1.4.2 Environment

Environments are mapped to functional areas within an organization. For example,
there might be separate development and production environments at your site. There
is no limit to the number of environments that may be defined.

In the life cycle, assume the UT and QA stages in the life cycle are part of the
development function. Production applications and their maintenance are part of a
function called production. The administrator defines environment MVSTEST to
include Stage UT and Stage QA, and environment MVSPROD to include Stage INT
and Stage PRD. Development activities take place in development libraries, outside of
Endevor.

1-8 Implementation Guide

1.4 Endevor Logical Structure

 1.4.3 Stage

The term stage refers to physical locations in the software life cycle. There must be
exactly two stages within each environment.

Stages have a name, representing their place in the life cycle (for example,
UNITTEST), and an ID (a single alphanumeric character). Stages are referred to in this
manual as Stage 1 (the first stage in an environment) and Stage 2 (the second stage in
an environment).

Stages can be linked together to establish unique promotion routes for program
inventory within and between environments. These routes make up the map for a site.

 1.4.4 System

Systems generally represent applications at a site. For example, a site may have both
financial and manufacturing applications.

Each system must be defined to each environment in which it will be used. This
definition makes the system available in both stages of an environment.

There are two systems in this example: FINANCE and MFG (manufacturing).

 1.4.5 Subsystem

A subsystem is a logical application within a system. For example, the financial system
might include a purchase order application (PO) and an accounts payable (AP)
application. Keep in mind the following:

■ There must be at least one subsystem per system.

■ A subsystem must be defined to each system in which it will be used.

Chapter 1. Basic Concepts 1-9

1.4 Endevor Logical Structure

For example, if you plan to have subsystem PO within system FINANCE, and you
define system FINANCE to several environments, then you must define subsystem
PO to system FINANCE in each of those environments.

■ A subsystem can have the same name as the system to which you define it.

In this example, system FINANCE has two subsystems, PO and AP. System MFG has
one subsystem, MFG.

 1.4.6 Type

A type is a category of source code. For example, you might create the following
types: COBOL (for COBOL code), COPYBOOK (for copybooks), and JCL (for JCL
streams). You must define a type to each system in each stage in which you want to
use it. All subsystems defined to a system can use the types defined to that system.

Endevor uses JCL streams called processors to automate the creation of executables
such as program load modules. You must associate one or more processor groups with
each type. Each processor group identifies the processors needed for a particular type
of source. User symbolics make it possible to share processors across groups.

In the example below, system FINANCE has types COBOL (COBOL code), JCL (JCL
streams), and COPYBOOK (copybooks). System MFG has types ASSEM (Assembler
code), JCL, and MACRO (Macros).

1-10 Implementation Guide

1.4 Endevor Logical Structure

 1.4.7 Element

Elements are members in a partitioned data set, an AllFusion CA-Panvalet for OS/390
and z/OS data set (hereafter referred to as simply "Panvalet"), an AllFusion
CA-Librarian for OS/390 and z/OS data set (hereafter referred to as simply
"Librarian"), sequential data sets, or an HFS file that are placed under control of
Endevor. The element name is frequently the member name. Each element is classified
by system, subsystem, and type. Its environment and stage determine its location in the
software life cycle.

 1.4.8 Element Classification

Endevor classifies elements according to the inventory structure you set up. Each
element is described uniquely in terms of the following:

■ Location in the software life cycle. This is determined by the environment and
stage where the element resides.

■ Inventory classification. This is determined by the system, subsystem, and type
with which the element is associated.

The diagram below illustrates element classification:

Chapter 1. Basic Concepts 1-11

1.4 Endevor Logical Structure

1.4.9 More About Elements

The diagram illustrates additional characteristics of elements:

■ Two elements can share the same name across types. In Stage UT, system
FINANCE, there are two elements named 12345: one is a COBOL program, one
is a copybook. The elements are different types, however.

■ The same element can exist at different stages in the life cycle. PGM00, an
assembler program, exists in both Stage UT and Stage QA in system
Manufacturing (MFG).

■ The same element and type can be in two different subsystems of the same
system.

1-12 Implementation Guide

1.5 Endevor Libraries

 1.5 Endevor Libraries

To implement an inventory structure, certain libraries must first be defined and
allocated (in the table below, the Endevor Defaults Table is mentioned; see the
Installation Guide for information about this, if necessary).

Library Comments Where/When Defined

Master Control File There is one Master Control File (MCF)
for every stage. A Master Control File
stores system, subsystem, and type
definitions, the names of the elements
currently in that stage, and other
information.

In the Endevor Defaults Table, during
implementation

Package Data Set There is one package data set per site.
Endevor stores all packages and
package-related information built at the
site in this data set.

In the Endevor Defaults Table, during
implementation

CCID Validation
Data Set

The CCID Validation data set defines
CCIDs and the types requiring CCID
use. This data set must be predefined in
order to perform CCID validation.

In the Endevor Defaults Table, during
implementation

Base and Delta Endevor uses base and delta libraries, for
each defined type, to store source code.
Base libraries store a full copy of either
the original code (if forward deltas are
used), or the current code (if reverse
deltas are used). With reverse delta
format, base libraries are also referred to
as "image" libraries. Delta libraries store
changes made to the source. There must
be at least one base and one delta library
per environment. Generally, there is one
set of libraries for each type in each
system.

On the Type Definition panel, during
implementation, or with DEFINE TYPE
SCL

Output Endevor uses output libraries to store
executable forms of elements produced
by processors. Allocate these libraries by
stage.

Within processors, during implementation

Chapter 1. Basic Concepts 1-13

1.5 Endevor Libraries

Library Comments Where/When Defined

Source Output Endevor uses source output libraries to
store copybooks, assembler macros, or
JCL procedures that are copied from
elsewhere and therefore have to be
available in full source form. Source
output libraries are stage-specific. You
can define a source output library for
each type in a stage, or share one library
across types.

On the Type Definition panel or with
DEFINE TYPE SCL

Note: Source output libraries are optional
if you store elements in reverse delta
(PDS) format and do not compress nor
encrypt.

Processor Load and
Listings

Endevor uses processor load libraries to
store the executable form of Endevor
processors. Allocate one processor load
library for each stage of your production
environment. Point to the production
processor load library from all stages.

Processor listing libraries are optional.
Endevor uses them to store listings when
processors are compiled.

On the System Definition panel, during
implementation, or with DEFINE SYSTEM
SCL

Endevor Listing Endevor uses listing libraries for listings
that are created by compilers,
link-editors, and other utilities within
processors, and then stored by the
CONLIST utility. A single library can be
shared across systems.

Within processors, during implementation

Include Endevor uses Include libraries to store
the full form of Panvalet (++INCLUDE)
and Librarian (-INC) INCLUDE
statements.

On the Type Definition panel, during
implementation, or with DEFINE TYPE
SCL

Processor Output These are libraries referred to in
processors, to which processors write
their output. Processor output libraries
can be source libraries, executable
libraries, or listing libraries.

Within processors, during implementation

1.5.1 Where to Allocate Your Libraries

The table below summarizes where each of these libraries should be allocated in the
sample software life cycle.

1-14 Implementation Guide

1.5 Endevor Libraries

Library Name C1DEFLTS DEV
TEST

DEV
QA

PROD
EMERG

PROD
PROD

Package data set x

Master Control
Files

x

CCID validation
data set

x

Base and delta
libraries, by type

x x x x

Output libraries,
by type

x x x x

Source output
libraries, by type

x x x x

Processor load
libraries

x x x x

Processor output
libraries (source,
executable, list)

x x x x

Include libraries,
by type

x x x x

Chapter 1. Basic Concepts 1-15

1.6 Working with Elements

1.6 Working with Elements

Endevor inventory is manipulated by executing Endevor commands called actions.
Some actions are available in both foreground and in batch, while others are available
only in batch. Batch actions are also available when building packages.

■ The User Guide explains how to execute actions in foreground and submit batch
action requests.

■ The SCL Reference Guide contains the syntax for the Software Control Language
(SCL) for Endevor. SCL allows you to code Endevor batch action requests.

1.6.1 Endevor Actions and Availability

The table below summarizes Endevor actions and their availability.

This Action Is Available in
Foreground

Is Available in
Batch

Description of Action

Add x x Puts a member from an external data set under Endevor
control.

Archive x Writes the current version of an element to a sequential
data set.

Copy x Copies an element from an archive data set to a data set
external to Endevor.

Delete x x Erases base and delta forms of an element and removes
related information from a Master Control File.

Display
(function)

x Displays information about an element.

Generate x x Creates executables and source outputs, if defined.

List x Creates a list of elements or PDS members that meet
specific selection criteria. One effective use of this
function is to perform impact analysis.

Move x x Moves elements between stages, within or across
environments.

Print x x Prints element or member information.

Restore x Restores elements to Endevor from an archive data set.

Retrieve x x Copies elements from Endevor to an external data set.

Signin x x Removes or changes the user signout associated with an
element.

Transfer x Moves elements between two Endevor locations or
between an Endevor and an archive location.

1-16 Implementation Guide

1.6 Working with Elements

This Action Is Available in
Foreground

Is Available in
Batch

Description of Action

Update x x Updates an element from an external data set.

1.6.2 Actions by Job Function

A typical site might include the following job functions:

 ■ Development

■ QA or Test

 ■ Turnover

 ■ Audit

 ■ Management

 ■ Endevor administration

The table below summarizes, for each job function, the actions that someone might
perform:

Action Dev QA/Test Turnover Audit Mgmt Admin

Add/
Update

x x x

Archive x

Copy x

Delete x

Display x x x x x x

Generate x x

List x x

Move x x x x

Print x x x x x x

Restore x

Retrieve x x x

Signin x x x x

Transfer x x

Chapter 1. Basic Concepts 1-17

1.6 Working with Elements

1.6.3 Creating Executable Forms of Elements

Endevor uses OS JCL streams called processors to create executable forms of source
code, including source modules, object modules, load modules, and listings. Processor
groups name the Generate, Move, and Delete processors to be associated with an
element, along with any symbols in the processors that can be overridden. For
example, one processor group might contain processors to compile and link-edit source
written in VS COBOL, and another group might contain processors for COBOL II
source.

There are three kinds of processors:

■ Generate processors execute automatically when an element is added or updated
in Stage 1, or generated in either stage. Optionally, Generate processors execute
when an element is moved, restored, or transferred to Endevor from an archive
data set.

Typically, the Generate processor creates an executable form of the element,
together with any associated outputs (such as listings).

■ Delete processors execute when an element is deleted, transferred, moved, or
archived. Generally, the Delete processor deletes any output that was created by
the corresponding Generate processor.

■ Move processors execute when Endevor moves elements from one stage in the life
cycle to another. Move processors generally copy all the output previously created
for the element, or recreate those outputs in the target stage. Optionally, a Move
processor can be executed when an element is transferred.

See the Extended Processors Guide for complete information about processors.

1.6.4 Correlating Source with Executables

Endevor can place an encrypted audit stamp, called a footprint, in the output source,
object, or load modules that are created by processors. The footprint provides an
integrity check between the source form of an element and its executable form.

 1.6.5 Packages

Endevor packages allow you to formalize your use of actions. Using packages, you can
do the following:

■ Create sets of actions (against elements) that can be tracked, maintained, and
reused as a unit.

■ Establish approval procedures for packages.

■ Ship packages to remote locations.

See the Packages Guide for complete information about packages.

1-18 Implementation Guide

1.7 Security

 1.7 Security

To provide a comprehensive security program for your Endevor system, you must
address security issues in two essential areas: data set security and functional security.

1.7.1 Data Set Security

Endevor does not provide data set security. Data set security is performed by a site
security package, such as RACF, eTrust CA-ACF2 Security for OS/390 and z/OS, or
eTrust CA-Top Secret Security for OS/390 and z/OS.

It is recommended that you implement data set security on the Endevor data sets (for
example, Master Control Files, package files, base and delta libraries, source output
libraries, and so on). This type of security prevents users from inadvertently altering
the Endevor configuration. For additional information, see the discussion of alternate
ID support in the Installation Guide.

 1.7.2 Functional Security

Functional security involves protecting Endevor inventory functions from unauthorized
use. These functions include access to menu options, the ability to perform certain
actions against certain inventory areas, and other secured Endevor options.

Functional security is provided by Endevor. You must choose one of the following:

■ Endevor Native Security Tables, which control environment access, primary and
foreground menu options, and action authorization. These tables require an LLA
refresh.

■ AllFusion Endevor Change Manager Interface for External Security, (formerly
External Security Interface - ESI) which controls environment access, primary and
foreground menu options, and action authorization through the interface and
security rules under your site security package. These tables are dynamic. In
addition, the Interface for External Security allows you to customize your
functional security capabilities.

See the Security Guide for information on implementing security for Endevor.

Chapter 1. Basic Concepts 1-19

1-20 Implementation Guide

Chapter 2. Implementation and the Organization

Chapter 2. Implementation and the Organization 2-1

2.1 Overview

 2.1 Overview

This chapter addresses the organizational and technical aspects of implementing
Endevor, which you must consider and understand before proceeding.

2-2 Implementation Guide

2.2 Organizational Considerations

 2.2 Organizational Considerations

When implementing Endevor, it is important that you understand both the technical
and organizational considerations before proceeding.

Organizations can expect higher productivity, less production downtime, and better
overall software quality shortly after the implementation of Endevor. However, any
change to organizational procedures requires careful project planning, education,
awareness, management support, and internal selling. This chapter addresses these
issues to help you understand, and therefore better manage, these aspects of
implementing Endevor.

2.2.1 Accessing Receptiveness to Change

To assess how Endevor will be received in your organization, consider the following
points:

■ How large is your organization? Would you consider your organization small (50
programmers or less), medium (50-200 programmers), or large (more than 200
programmers)?

■ How concise are the standards for software management now? Are they
documented? Are they enforced? If the standards are not clear, what will it take
for the organization to agree upon what the standards will be?

■ Will Endevor be used extensively across groups within the organization? For
example, will development, QA, and production turnover all use it?

■ Were all groups that will use Endevor involved in the evaluation and buying
decision? If any of those groups were not involved in the original assessment, you
may need to show them the benefits of Endevor.

■ Are the organization's reasons for purchasing Endevor clearly understood by all
groups impacted by the purchase? Different levels of objectives include control,
standardization, and auditability.

2.2.2 Developing a Strategy

When all considerations are addressed, you need to develop a strategy for proceeding.
Make decisions about the following issues:

■ How much of the implementation effort do you want to spend on organizational
activities, such as education and internal selling? How much effort on technical
activities, such as writing processors?

For an average size company (100 programmers or so), the ratio of time spent
should be about 50/50. For larger companies, the percentage of time spent on
organizational issues must be higher.

■ How extensively should you document current procedures, and how much time is
needed to define new procedures?

Chapter 2. Implementation and the Organization 2-3

2.2 Organizational Considerations

■ How do you get different groups to agree on a standardized set of procedures?

■ How much internal selling is needed to obtain management support for Endevor in
the organization?

■ What is the scope of the implementation? For example, should you implement
source management first, and output and configuration management at a later
time? Or, do you want a phased approach such as JCL for the entire company,
then copybooks, then COBOL, and so on?

2-4 Implementation Guide

2.3 Selecting an Implementation Team

2.3 Selecting an Implementation Team

It is strongly recommended that at least one full-time person is devoted to coordinating
the Endevor implementation effort. You can add more resources as needed.

2.3.1 Required Technical Knowledge

People with the following knowledge sets should be on the team, or readily accessible:

■ IBM OS/390 JCL

■ Application development software (such as compilers, linkage editors, and so on)

■ Utilities, report writers, and so on

■ Operation and use of ISPF/PDF facilities

■ Your security system (usually RACF, eTrust CA-Top Secret Security for OS/390
and z/OS, or eTrust CA-ACF2 Security for OS/390 and z/OS)

 ■ Audit requirements

■ Testing and production standards and turnover procedures

■ Applications to be implemented

■ Current procedures (standard and emergency changes, approval procedures, and so
forth)

2.3.2 Required Organizational Involvement

Ownership of Endevor varies by organization. However, representatives from the
following areas will probably be required for the implementation:

■ Technical Services—System software specialists are needed to install and verify
the installation as described in the Installation Guide. Operations analysts are
needed to address JCL, production scheduling, and other general production
turnover questions.

■ Production Control—Representatives are needed to assist in automating the
movement of new or changed software into production. This ensures that new
procedures satisfy the business needs of the organization.

■ Applications—At least one analyst from each application must be available during
that application's implementation, to assist in application classification, compile
procedures, training, and so on.

■ Security Administration—An authorized person must define the appropriate
security rules.

■ Auditing—A person from the auditing department must ensure that audit
requirements are defined and that the new procedures satisfy these requirements.

■ Training and documentation—These groups need to be involved in developing
training and internal documentation to support the system.

Chapter 2. Implementation and the Organization 2-5

2.3 Selecting an Implementation Team

2.3.3 Public Relations Requirements

Some very large organizations have a dedicated person handling "public relations"
work related to Endevor. How you choose to handle this aspect of the
implementation—the need to gain acceptance from many parts of the
organization—consider involving people with the following skills on the
implementation team:

■ Experience with the environment—Having an experienced person who
understands the environment and is easy to communicate with is highly beneficial.
This person should be able to relate to the production control and operations
perspectives as well as the development and QA perspectives.

■ Organizational skills—Often, a representative from the implementation team is
asked to mediate discussions between different groups trying to derive standards
for software management.

2-6 Implementation Guide

2.4 Laying the Groundwork

2.4 Laying the Groundwork

When your organization made the decision to acquire Endevor, Computer Associates
representatives most likely spent time with the people performing the evaluation,
explaining how Endevor could suit the needs of the organization. Whatever the scope
of your implementation, the implementation team will probably have to do some
internal selling as well. Management, production turnover staff, developers from
different groups, auditors, the QA staff, and other groups will need to learn about and
accept Endevor before offering their support for the implementation.

2.4.1 Prepare a Presentation

Plan on preparing a presentation to introduce Endevor to the people in your
organization who are not familiar with Endevor. Depending on the complexity of your
organization, you may need to create several presentations. Your presentations should
include items such as those listed below:

■ A summary of the problems faced under the current software management
procedures, and the justification for the acquisition of Endevor. Whenever
possible, use objective numbers and cost justifications, such as number of system
outages per month due to software problems.

■ An overview of Endevor functionality.

■ An explanation of how Endevor will help the organization meet its goals.

■ A brief explanation of the proposed Endevor implementation, including a
walkthrough of the software life cycle. As the presentation proceeds, explain the
benefits and relate the solution to the problems identified above.

■ Time frames for the implementation, and what is expected of the group you are
addressing.

2.4.2 Tailor the Presentation

Tailor your presentation to your audience. For a presentation to higher-level
management, for example, you may want to de-emphasize the life cycle and technical
issues surrounding the implementation and focus on the resources required, the
payback expected, and the time frames for implementation. For programmers, focus on
how Endevor can increase their productivity by allowing them to view change history
for their programs online, or show them how to use the footprint display panels to
view source directly from load modules.

Emphasize goals in all presentations and public relations efforts. Work into each
presentation the goals of productivity, availability of the production software
environment, and any additional objectives for which Endevor was acquired.

Chapter 2. Implementation and the Organization 2-7

2.5 Make the Presentation

2.5 Make the Presentation

Once the groundwork is in place for the implementation, it is time to introduce
Endevor to the various groups within the organization that will use the product and
benefit from it.

2.5.1 Introducing Endevor to an Organization

When making a presentation to the following groups, consider stressing the points
indicated:

■ Management—Management must accept the proposed implementation and give it
the appropriate priority over other tasks. Inevitably, a manager has limited
resources, so you must convince the manager that Endevor is the best way to
increase software quality and personnel productivity.

Show management that Endevor improves productivity, improves software quality,
and standardizes the software management process. You may want to discuss
approvals and reporting, areas in which management may be involved with
Endevor.

■ Development—It is important to show development personnel how Endevor can
improve the process of solving problems, viewing changes, preventing regression,
and improving production availability (resulting in fewer late night phone calls!).
Show them that Endevor can make their jobs easier by reducing software
development and maintenance time.

■ Production turnover—Show how Endevor will automate the production turnover
process, move source and executables together, facilitate backing out and
addressing quick fixes, and provide a better audit trail of who made changes.
Endevor also enforces standards for things like JCL (by automating the invocation
of JCL-checkers like JOB-SCAN) without the production staff's involvement. By
the time a change gets to the production staff, they can be sure it has already
passed standards.

■ Audit—The audit group can have a great deal of influence over software
management procedures, particularly in regulated industries. In addition to the
other benefits of Endevor, audit groups should be shown the change tracking,
SMF recording, and footprinting features in Endevor.

Emphasize that Endevor can provide auditors with preventive controls rather than
detective controls; that is, prevent the exception before it occurs rather than
improve the process through which exceptions are detected.

2-8 Implementation Guide

2.5 Make the Presentation

2.5.2 After the Presentation

After the presentation, keep in touch with the attendees to gain feedback from the
presentation, to alert them when their particular group will be affected by the
implementation process, and to address ongoing questions or concerns from them or
anyone in their group.

Presentations are not the only way to introduce Endevor to an organization. Additional
implementation aids include the following:

■ Computer Associates sales materials—Computer Associates representatives are
more than happy to provide sales materials that you can distribute to coworkers.

■ Demonstrations—You may want to use the supplied MVSTEST and MVSPROD
environments to show people how Endevor works. Use a simple demo
(RETRIEVE, ADD, MOVE) to show functionality. Tailor your demo to the
audience (for example, auditors would probably like to see footprinting, while
programmers would like to see online change history tracking).

■ Personal contact—Consider setting up a special phone number that people can
call for answers to their questions about Endevor. Have someone readily available
to dispense reliable product and implementation information.

Chapter 2. Implementation and the Organization 2-9

2.6 Using a Pilot Application

2.6 Using a Pilot Application

One of the best ways to implement Endevor is to start with a pilot application. No
matter how you decide to approach the implementation (for source, output, or
configuration management), a successful pilot makes the rest of the implementation
infinitely easier.

The implementation of a pilot system allows you to:

■ Validate your software life cycle design and procedures.

■ Build momentum and excitement about Endevor within the organization.

2.6.1 Characteristics of the Pilot Application

A pilot application ideally has the following characteristics:

■ One system, two to four subsystems, and a good sampling of element types to be
managed.

■ Approximately 200 - 400 or more elements, with the maximum amount of 1000.
Remember that an element is any component that belongs to the
application—whether it is a copybook, program, JCL, or other type.

■ Relatively little change activity.

■ Available personnel. Because this is the first application to be implemented, more
time than usual may be required of the people involved with the pilot group.

You may want to rate several applications according to the above criteria to determine
the best application to use as the pilot.

2-10 Implementation Guide

2.7 Building Momentum

 2.7 Building Momentum

Building momentum in the organization is the best way to keep the implementation
process on track. In addition to implementing a successful pilot application, you can
also build momentum by doing the following:

■ Talking Endevor—For example, when you hear of a programmer overlaying a
colleague's code, do not hesitate to mention how the situation could have been
avoided with Endevor.

■ Using the pilot project as a reference—When people ask how Endevor works,
refer them to the pilot application staff to share their experiences.

■ Charting the progress of each group in the implementation effort—The figure
below shows how you can accomplish this simply yet effectively, perhaps in the
context of an implementation newsletter.

Many sites that have tried this approach found that it improved the motivation of
teams that were on or ahead of schedule, as well as those teams that were behind
schedule.

Chapter 2. Implementation and the Organization 2-11

2.8 Summary

 2.8 Summary

Each organization's software management requirements are unique. An organization
must therefore develop an implementation strategy for Endevor that conforms to these
requirements. An awareness of the organizational considerations pertaining to software
management at your site can help you ensure a successful Endevor implementation.

2-12 Implementation Guide

 Chapter 3. Implementing Endevor

Chapter 3. Implementing Endevor 3-1

3.1 Overview

 3.1 Overview

This chapter briefly describes the steps to use when implementing Endevor.

 3.1.1 Endevor Implementations

Endevor is a fully functional software management tool. As mentioned in Chapter 1,
“Basic Concepts” on page 1-1, you can implement Endevor to provide many levels of
functionality.

You can implement Endevor for the following:

■ Source management only

■ Output management as well as source management

■ Configuration management as well as source and output management

 3.1.2 Assumptions

This chapter was written with the following assumptions:

■ Endevor has been installed and the installation verified.

■ The MVSTEST and MVSPROD environments provided on the installation tape
are available.

■ You are familiar with basic Endevor concepts. These concepts are explained in
Chapter 1, Basic Concepts.

Where appropriate, this chapter refers you to the Endevor documentation set. To make
the best use of this chapter, this documentation set should be available.

3.1.3 The Software Life Cycle

The life cycle shown in this chapter, or a slight variation of it, is used by a majority of
Endevor implementations. It is the basis for the supplied MVSTEST and MVSPROD
environments, and will be used later when explaining data set naming conventions and
other implementation considerations.

3-2 Implementation Guide

3.2 Implementation Alternatives

 3.2 Implementation Alternatives

There is no one set way to implement Endevor. Some sites implement Endevor in
phases. In the first phase, a site might implement all applications for source
management. In the next phase, the site implements each application for output
management.

Other sites implement each application for both source and output management.

You must decide which type of implementation best suits the requirements of your
site.

Tip: As you proceed with the implementation, document the procedures you develop
and the standards you use. This is important for the training phase that follows
implementation.

3.2.1 A Phased Implementation

With a phased implementation, you have the following advantages:

■ Inventory is established

■ Signin and signout can be enabled

■ Base (forward delta) or images (reverse delta) and change levels are available

■ Benefits of source management are realized quickly

■ Security is activated for all application source

■ All personnel are trained at the same time on product functionality

3.2.2 A Full Implementation

A full implementation shares the advantages of a phased implementation, and also
provides the following advantages:

■ Online approvals are allowed

■ Procedures are standardized

■ The Automated Configuration Manager (ACM) is enabled

■ Source can be related to executables

Chapter 3. Implementing Endevor 3-3

3.3 Implementing for Source Management

3.3 Implementing for Source Management

There are several reasons why you might decide to implement Endevor only for source
management:

■ You do not want to use Endevor to manage executables.

■ You plan a phased-in implementation of Endevor.

■ You are looking for a quick replacement for your existing library management
system.

 3.3.1 What's Involved?

There are six steps involved in implementing source management:

Step What You Do

1 Define your software life cycle

2 Analyze your inventory

3 Define the logical structure to Endevor

4 Define the physical structure to Endevor

5 Define CCIDs (optional)

6 Enable package processing

3-4 Implementation Guide

3.4 Step 1: Define Your Software Life Cycle

3.4 Step 1: Define Your Software Life Cycle

Software life cycles are site-specific. To determine the best life cycle for your site, you
need to spend as much time as necessary to accomplish the following:

■ Understand and document current procedures

■ Develop procedures for normal and emergency processing

■ Understand current library configuration and ownership

■ Reach consensus on software management objectives

Review the discussion of the software life cycle in Chapter 1, Basic Concepts, to
refresh your understanding of the life cycle and its components.

3.4.1 Decide Stages for Endevor Control

Decide which stages of the life cycle you want Endevor to control. You can put some,
or all, of the stages in your life cycle under control of Endevor.

 3.4.2 Define Environments

Environment is the Endevor term for functional areas in your organization. The
illustration below shows how environments are set up in the Endevor sample
application (which represents a fairly typical life cycle).

The testing (UT) and quality assurance (QA) stages in the life cycle are part of the
development function. Production applications (PRD) and problem fixes (INT) are part
of the production function. The administrator defines environment MVSTEST to
include Stage UT and Stage QA, and environment MVSPROD to include Stage INT
and Stage PRD. Development activities take place in a development library, outside of
Endevor.

Chapter 3. Implementing Endevor 3-5

3.4 Step 1: Define Your Software Life Cycle

3.4.3 Define the Map

Applications in each life cycle follow a unique route through the environment and
stage locations you have defined. You can set up as many routes as you need to
accommodate different life cycles at your site. These routes make up the map for your
site. Endevor uses these routes to automate the processes of adding, displaying,
retrieving, moving, and generating inventory in a particular life cycle.

The Endevor administrator might decide to establish a route for inventory at this site
that promotes the inventory from Stage UT to Stage QA to Stage PRD. This map is
illustrated below:

CAUTION:
You must enter the first environment in the map through Stage 1. Stage 1 always
maps to Stage 2 of the environment. You can, however, map Stage 2 of one
environment to Stage 1 or Stage 2 of the next environment.

A map route must always exit an environment from Stage 2. The route can enter either
Stage 1 or Stage 2 of the next environment.

3.4.4 "Normal" Development Procedure

Normal development proceeds as follows:

Step Action

1 Retrieve inventory from Stage PRD to the development
library

2 Work on the inventory and add it into Stage UT

3 Promote the inventory along the map to Stage QA and
eventually back to Stage PRD

3-6 Implementation Guide

3.4 Step 1: Define Your Software Life Cycle

3.4.5 Quick Fix or Emergency Procedure

Quick fixes or emergencies are handled as described below:

Step Action

1 Retrieve inventory from Stage PRD to a maintenance
library

2 Work on the inventory and add it into Stage INT

3 Promote the inventory to Stage PRD or have the INT
types compile directly into override emergency libraries

3.4.6 Mapping for Parallel Development

For a parallel development situation, many users find it advantageous to create an
additional route, for long-term development use. The map in these situations has two
routes and can be depicted as shown:

To define a map, see the Administration Guide.

3.4.7 Define Master Control Files

You will need one Master Control File (MCF) per stage for your software life cycle.
For example, the MVSTEST and MVSPROD environments each have two stages, and
therefore a total of four Master Control Files. These are VSAM data sets.

■ Suggested naming conventions:

NODE1 User-defined (for example, Endevor)

NODE2 Stage ID

Chapter 3. Implementing Endevor 3-7

3.4 Step 1: Define Your Software Life Cycle

An example of a VSAM cluster name for a Master Control File is:

ENDEVOR.TEST.MCF

■ Occurrence—One per stage

■ Size—Approximately five cylinders per 1000 elements to be maintained

 ■ Format—VSAM

■ Where defined—In the Endevor Defaults Table

NODE3 MCF

NODE4 INDEX or DATA (this node is supplied by the system)

3.4.8 Environment Implementation Checklist

When defining your environments and map, be sure you do the following:

1. Set up routes that reflect your software life cycle. Draw a diagram of the routes
first, using the previous examples as models.

2. Establish the routes in the Endevor Defaults Table. The environments in the routes
must appear in the same order (top-down) as they were established in the map.
For example, you set up the following map route:

TEST->QA->PROD

These environments must appear in the Endevor Defaults Table in the following
order:

TEST

QA

PROD

3. Edit the Endevor Defaults Table. Make sure that you edit the table to include your
Master Control File data set definitions.

You must also ensure that the appropriate site options are correctly specified. For
example, if you plan to implement Endevor for configuration management, ensure
that the Endevor Automated Configuration Manager (ACM) is enabled in the
Endevor Defaults Table.

CAUTION:
Do not activate the Interface for External Security until the required preparatory
steps are completed.

3-8 Implementation Guide

3.5 Step 2: Analyze the Inventory

3.5 Step 2: Analyze the Inventory

Review Chapter 1 if you need to refresh your memory about the Endevor inventory
structure. During this step, you classify your present inventory according to this
structure.

First you must decide, in broad terms, how you want to classify your inventory. You
can classify inventory by:

■ Business function (Applications, Tools, Systems)

■ Application group (Finance, Human Resources)

 ■ Another method

One of the most common ways of structuring your inventory is to classify your
inventory by application group (for example, Finance), and by application within this
group (for example, Accounts Payable). This structure maps to the system-subsystem
structure of Endevor, and is the format used in the sample application.

You also need to categorize the application components with which you are working;
for example, JCL, COBOL source, or copybooks. This categorization maps to types in
Endevor.

You can use the Endevor Inventory Analyzer to identify the different kinds of
components that exist in your current inventory and to classify them according to
Endevor types and processor groups. The reports produced by the Analyzer are a
useful way to identify the types and processor groups that you need to define to
Endevor.

You can also use the Inventory Analyzer, along with your data set or member naming
conventions, to classify your inventory into the Endevor logical structure (system and
subsystem) that you decide to use.

See the Inventory Analyzer Guide for more information and instructions.

CAUTION:
If you are using security, the inventory structure you implement may impact the
security rules that you have to define. Enabling security is one of the final
implementation steps. See 3.16, “Step 10: Enable Security” on page 3-28 for more
information.

Chapter 3. Implementing Endevor 3-9

3.6 Step 3: Define the Logical Structure

3.6 Step 3: Define the Logical Structure

Based on the inventory grouping that you have designed in Steps 1 and 2, you can
now define your logical structure to Endevor.

Tip: Before actually defining the logical and physical structures, write down the
proposed naming standards for the logical structure and libraries, and review them to
make sure the structures are consistent and meet your needs.

3.6.1 Implement the Logical Structure

There are two ways you can implement your logical structure: online and in batch. The
advantage of online processing is that it is realtime, and options pop up immediately.
The advantage of batch processing is that you create a template that you can use
repeatedly to define your inventory structure.

The most beneficial (and easiest) method of implementing your inventory structure
involves a combination of both online and batch processing. This procedure is
described below:

If you decide not to use the combination of methods, it is recommended that you
implement your logical structure using batch processing.

See the Administration Guide for information about online implementation. See the
SCL Reference Guide for information about batch implementation.

Step Action

1 Build an environment by defining a system,
subsystem(s), type(s) and processor group(s) for a subset
of your inventory. Do so online by selecting the
ENVIRONMENT option from the Primary Options
Menu (define a small subset of model definitions; for
example, define 1 system, 1 subsystem, 1 type, and 1
processor group).

2 Once the environment is built, use the batch
environment BUILD SCL action to create DEFINE SCL
for the environment.

3 Modify the SCL created above to create the definitions
for the remainder of your inventory structure.

3-10 Implementation Guide

3.6 Step 3: Define the Logical Structure

 3.6.2 Define Systems

When defining systems to Endevor, you must do the following:

■ Define a system to each environment in which you plan to use the system.

■ Define at least one subsystem to each system.

You can map systems across environments.

 3.6.3 Define Subsystems

You must define a particular subsystem to each system in which you plan to use the
subsystem.

You can map subsystems across environments.

 3.6.4 Define Types

If you used the Endevor Inventory Analyzer, it has indicated most or all of the types
you should define. Remember the following:

■ You must define types to each system and stage combination in which you plan to
use them. All subsystems defined to a system can use the types defined to that
system.

■ You can map types across the environment/stage locations in your map.

Tip: Mapping system, subsystem, or type names allows these names to change
automatically as source moves up the map. See the Administration Guide for more
information about mapping system, subsystem, and type names.

3.6.5 Type Naming Conventions

Consider using generic type names, such as COBOL. You can then create as many
processor groups as you need to handle the variations within each type. For example,
for type COBOL, you could create a processor group for each type of COBOL that
must be processed. See the Extended Processors Guide for more information on
processor groups.

Suggested naming standards for types are presented below. This list is not complete
and is provided as a guideline only.

ASM LINKCARD SORTCNTL FORTRAN

BASIC MACRO SPECS RPG

CLIST MARKV TABLES JCL

COBOL NETRON TELON REPORTS

COPYBOOK PLI TRNSFORM SCL

Chapter 3. Implementing Endevor 3-11

3.6 Step 3: Define the Logical Structure

The Inventory Analyzer uses these naming conventions for types.

EASYTREV PROC UTILITY

3.6.6 Verifying the Definitions

After you have defined your logical structure to Endevor, run CONRPT07, System
Definition Profile, to verify that you have set up the correct definitions. You should
also run CONRPT07 whenever you change a map route, to verify that you have made
the modifications correctly.

See the Reports Guide for a sample of CONRPT07.

3-12 Implementation Guide

3.7 Step 4: Define the Physical Structure

3.7 Step 4: Define the Physical Structure

This step involves creating a physical data set structure to support the logical structure
you have just defined.

For any Endevor implementation, you must define and allocate Master Control Files
and base and delta libraries. You defined and allocated Master Control Files in Step 1.
In Step 4, you define and allocate base and delta libraries.

If you plan to use Endevor packages, you must also define and allocate a package data
set. See 3.9, “Step 6: Enable Package Processing” on page 3-18 for related
information.

 3.7.1 Naming Conventions

Use the following suggested naming conventions when defining your base and delta
libraries. These libraries typically are partitioned data sets or of another standard
partitioned organization. See the discussion of format in 3.7.7, “Where Libraries Are
Defined” on page 3-16.

An example of a base library name is:

FINANCE.TEST.BASE

NODE1 System

NODE2 Stage ID

NODE3 Base

Delta

3.7.2 Using Symbolics to Define Endevor Libraries

Endevor allows you to define base, delta, source output, and Include libraries using
symbolics. The library name in the example above could be written as:

&C1SYSTEM..&C1STAGE..BASE

When you define this data set using symbolics, the definition is reusable for multiple
type definitions. The symbolics you can use are listed below:

Organize Libraries By Using this Symbolic Or this Alias

Site &C1SITE (no alias)

Environment &C1ENVMNT &C1EN

Stage &C1STAGE &C1ST

Stage 1 &C1STAGE1 &C1ST1

Chapter 3. Implementing Endevor 3-13

3.7 Step 4: Define the Physical Structure

Use these symbolics when specifying base and delta libraries on type definition panels.
Endevor replaces the symbolic with the proper information from the action request.
Note the following example:

&C1SYSTEM..&C1SUBSYS..&C1STGID..SRCLIB

This library name refers to a library called SRCLIB for each subsystem and stage
combination within a given system.

Organize Libraries By Using this Symbolic Or this Alias

Stage 2 &C1STAGE2 &C1ST2

Stage ID &C1STGID &C1SI

Stage 1 ID &C1STGID1 &C1SI1

Stage 2 ID &C1STGID2 &C1SI2

Stage number &C1STGNUM &C1S#

System &C1SYSTEM &C1SY

Subsystem &C1SUBSYS &C1SU

Type &C1ELTYPE &C1TY

 3.7.3 Occurrence

It is recommended that you allocate at least one base/delta library pair per system per
stage for all components that are not needed in PDS format outside of Endevor (for
example, compiled source). For components that are needed in PDS format outside of
Endevor, see the information in 3.7.7, “Where Libraries Are Defined” on page 3-16.

Base and delta libraries can be shared across stages within the same environment.

 3.7.4 Sizing

To estimate the size of these data sets, use the Disk Space Requirements Worksheet
provided in the Installation Guide.

For directory sizing and data set maintenance information, see the Utilities Guide.

 3.7.5 Format

Base and delta libraries can be in PDS, PDS/E, Endevor LIB, Panvalet, or Librarian
format. In addition, the base library can also be an HFS directory, however, the delta
library cannot. For information about Endevor LIB data sets, see the Utilities Guide.

3-14 Implementation Guide

3.7 Step 4: Define the Physical Structure

3.7.6 Element Storage Formats

You can store elements in either reverse delta or forward delta format.

Reverse Delta Format—In reverse delta format, the element base is the current image
of the element. Endevor recreates previous levels of the element by applying delta
levels to this base. All previous changes to the element are maintained in the delta
library.

Computer Associates recommends this format for Endevor base product users. It is
also recommended that you use reverse delta format for types when the current level
of the element might be used by another process. For example, a COPYBOOK or a
COBOL program might be used as part of a compile process; or JCL may be
submitted for execution.

If you select this format, you can store the element base as is (unencrypted), or
encrypted and compressed:

Be aware of the following if you select the reverse delta storage format:

■ Endevor does not allow two unencrypted elements with the same name to be
stored in the same base library. Keep this in mind when planning your inventory
structure.

■ A source output library is required if elements will be backed out.

Forward Delta—In forward delta format, the element base is the source form of the
element when it is first added into Endevor. When Endevor processes elements stored
in this format, it applies all delta levels to the base to create the current image of the
element.

If you select this format, Endevor encrypts and compresses both the base and
subsequent deltas, with the same advantages of encryption and compression that occur
for reverse delta format.

Store the Element Base For these Advantages

Unencrypted Source is directly readable by programs outside of
Endevor, such as compilers.

Base/delta format is the same as regular PDS format,
eliminating the need for source output libraries.

List and query functions perform more efficiently.

In encrypted and
compressed format

You receive DASD savings of 10-40%.

A single base library can contain multiple elements with
the same name, but different system, subsystem, or type
specifications.

Chapter 3. Implementing Endevor 3-15

3.7 Step 4: Define the Physical Structure

3.7.7 Where Libraries Are Defined

Endevor libraries are defined on the Type Definition panel or using the DEFINE
TYPE SCL.

3.7.8 More About Base and Delta Libraries

The following information applies to base and delta libraries:

■ If you plan to use the Automated Configuration Manager (ACM), increase size
estimates by 20% and double the number of directory blocks.

If you decide to use reverse delta format, increase the size estimate of the delta
library by 30% and triple the number of directory blocks. The increased size is
necessary because both the base and delta members for the component lists are
stored in the element's delta library.

■ The LRECL for base and delta libraries must be set to 255.

If you decide to use reverse delta format, only the delta library LRECL must be
set to 255.

■ Before allocating the base and delta libraries, you must make a decision regarding
the format in which you want to store element source and change history.

3.7.9 Backup and Recovery

Planning backup and recovery procedures is a very important part of implementation.

Put backup and recovery procedures in place in accordance with the instructions in the
Utilities Guide.

3-16 Implementation Guide

3.8 Step 5: Define CCIDs (Optional)

3.8 Step 5: Define CCIDs (Optional)

Endevor change control identifiers (CCIDs) most often correspond to mechanisms such
as work order requests or request-for-service numbers. If your shop uses this type of
mechanism, consider implementing CCIDs.

If you decide to implement CCIDs, you must make the following decisions:

■ Do you want to simply make the tool available, without validation or
administration?

■ Do you want to predefine CCIDs so they can be validated? Predefining CCIDs
allows you to do the following:

– Validate CCIDs entered by users against the predefined CCIDs.

– Associate user IDs or specific inventory areas with a CCID.

3.8.1 CCID Definition Data Set

If you decide to validate CCIDs, you must allocate a CCID Definition data set.

■ Suggested naming conventions:

An example of a CCID Definition data set is:

ENDEVOR.CCIDVAL.SAMCIPO

■ Occurrence—One per site

■ Size—This data set is usually quite small-if you allocate one primary track with
one secondary extent, you should have enough space

 ■ Format—Sequential

■ Where defined—In the Endevor Defaults Table

For more information on CCIDs and CCID validation, see the Administration Guide.

NODE1 project

NODE2 data set

NODE3 type

Chapter 3. Implementing Endevor 3-17

3.9 Step 6: Enable Package Processing

3.9 Step 6: Enable Package Processing

Packages are the online approval mechanism within Endevor. If you want to replace
or upgrade your existing approval system (for example, a paper system), packages are
an excellent way to do so.

Endevor packages allow you to do the following:

■ Create sets of actions that can be tracked, maintained, and reused as a unit.

■ Establish approval procedures for packages.

■ Ship package outputs to remote locations.

See the Packages Guide for information on packages and approver groups, as well as
shipping package outputs.

3.9.1 Set Up a Naming System

Decide on a naming convention for packages. For example, you may want to
increment package numbers sequentially. Or, you might want to include codes that
indicate which group or application is using a particular package, or which CCIDs are
involved with a package.

3.9.2 Define and Allocate a Package Data Set

If you decide to use a package data set, you must define and allocate it as follows:

■ Suggested naming conventions:

An example of a package data set name is:

uprfx.uqual.PACKAGE

■ Occurrence—One per site

■ Size—For package data set size information, see the Installation Guide

 ■ Format—VSAM

■ Where defined—In the Endevor Defaults Table

NODE1 uprfx

NODE2 uqual

NODE3 PACKAGE

3-18 Implementation Guide

3.9 Step 6: Enable Package Processing

3.9.3 Enable Component Validation

The component validation feature is invoked during package CAST, and ensures the
following:

■ An element cannot be moved without its corresponding dependencies.

■ An element cannot be moved if it has not been assembled, compiled, or linked
with the current version of a dependent element.

For instructions on enabling component validation, see the Packages Guide.

 3.9.4 Approver Groups

Decide who will approve packages in specific inventory areas. Define approver groups
for these approvers, then relate the groups to the necessary inventory areas.

See the Packages Guide for more information about approver groups and the
procedures involved in performing the above tasks.

3.9.5 What to Do Next

When you have finished Steps 1-6, you can do one of the following:

■ Continue with Step 7 in the next section if you are implementing Endevor for
output or configuration management.

■ Go to 3.15, “Final Implementation Steps” on page 3-27 if you are implementing
Endevor for source management only.

Chapter 3. Implementing Endevor 3-19

3.10 Implementing for Output Management

3.10 Implementing for Output Management

To implement Endevor for output management, you must first complete Steps 1-6, as
presented in the "Implementation for Source Management" section of this chapter.

Two additional steps are involved in implementing Endevor for output management:

Step What You Do

7 Define and allocate output libraries

8 Define processors

3-20 Implementation Guide

3.11 Step 7: Define and Allocate Output Libraries

3.11 Step 7: Define and Allocate Output Libraries

In addition to the libraries allocated in Step 4, implementing Endevor for output
management requires the allocation of additional libraries to store the outputs of
Endevor processors. The information below summarizes which user-defined libraries
should be allocated to implement Endevor for output management.

■ Executable libraries, by type

■ Source output libraries, by type

■ Processor load libraries

■ Include libraries, by type (if applicable)

■ Listing libraries (if you are storing listings online)

3.11.1 Output Library Information

When you define output libraries, use the following conventions:

■ Suggested naming conventions:

An example of an output library name is:

FINANCE.TEST.LOADLIB

■ Occurrence—Usually one per system/stage/type

■ Size—See the following for size information:

– To estimate the size of these data sets, see Appendix B, Disk Space
Requirements, in the Installation Guide.

– For directory sizing and data set maintenance information, see the Utilities
Guide.

– For information about Endevor LIB data sets, see the Utilities Guide.

■ Format—PDS, PDS/E, Endevor LIB, Panvalet, Librarian. Output library format is
usually dictated by executable requirements. Source output and INCLUDE
libraries can also be HFS directories.

NODE1 System

NODE2 Stage

NODE3 COPYLIB

LISTINGS

LOADLIB

JCLLIB

MACLIB

OBJLIB

PROCLIB

SRCLIB

and so on

Chapter 3. Implementing Endevor 3-21

3.11 Step 7: Define and Allocate Output Libraries

■ Where defined—In the type definition and in processors

3.11.2 More About Output Libraries

Endevor can write outputs to any output library. For example, if your site has
centralized load libraries or JCL libraries, Endevor can write to them. The naming
conventions presented here are only a suggestion.

3.11.3 Output Library Allocation

Consider setting up a worksheet for output library allocation. Use a format similar to
the sample worksheet shown below:

For examples of output library allocations, see the type definitions in the sample
application.

Library Name Format DCB
information

Size Comments

FINANCE.TEST.-
LOADLIB

PDS RECFM=U,
LRECL=80,...

1 cyl

FINANCE.QA.-
JCLLIB

PDS 1 cyl

FINANCE.EMER.-
SRCLIB

PDS 10
cyl

FINANCE.PROD.-
MACLIB

PDS 1 cyl

FINANCE.TEST.-
JCLLIB

PDS 1 cyl

3-22 Implementation Guide

3.12 Step 8: Define Processors

3.12 Step 8: Define Processors

Processors are JCL streams that create executables from Endevor elements. To use
Endevor for output management, you must write and maintain processors to create the
desired executables.

 3.12.1 Writing Processors

See the Extended Processors Guide for an explanation and illustration of processor
creation, testing, and management, as well as the various types and uses of processors.

If you plan to implement Endevor for configuration management, be sure to include
the MONITOR=COMPONENTS statement in your processors. See the Automated
Configuration Option Guide for instructions on adding MONITOR=COMPONENTS to
your processors.

CAUTION:
You should test your processors thoroughly, using representative examples of
each element type of the application to be implemented.

3.12.2 Processor Groups and Types

Using the list of types and processor groups produced by the Inventory Analyzer,
define the processor groups and associate them with their respective types.

See the Extended Processors Guide for information about processor groups, including
naming conventions.

 3.12.3 Managing Processors

See the Extended Processors Guide for information about managing processors.

3.12.4 Determining Type Processing Sequence

A type processing sequence is used when multiple element types are processed within
a single batch request.

See the Administration Guide for information on type sequence definition.

 3.12.5 Sample Processors

The sample implementation includes the following processors:

Processor Name Description

GCOBNBL A COBOL Compile and Link-edit processor.

Chapter 3. Implementing Endevor 3-23

3.12 Step 8: Define Processors

Processor Name Description

GCIINBL A COBOL II Compile and Link-edit processor.

GCOBDBL A processor that performs a DB2 Precompile, Compiles and
Link-edits a COBOL program, binds the DB2 plan, and
footprints the plan table.

GCIIDBL A processor that performs a DB2 Precompile, Compiles and
Link-edits a COBOL II program, binds the DB2 plan, and
footprints the plan table.

GCOBNBO A Compile-only processor for COBOL.

GCOBNBL1 A COBOL Compile and Link-edit processor with linkage
editor input.

GCOBNCL A CICS Precompile, COBOL Compile, and Link-edit
processor.

GLECNNL A Link-edit-only processor (composite link).

GASMNBL An Assembler Compile and Link-edit processor.

3.12.6 What to Do Next

When you have finished Steps 1-8, you can do one of the following:

■ Continue with Step 9 in the next section if you are implementing Endevor for
configuration management.

■ Go to 3.15, “Final Implementation Steps” on page 3-27 if you are implementing
Endevor for source and output management only.

3-24 Implementation Guide

3.13 Implementing for Configuration Management

3.13 Implementing for Configuration Management

To implement Endevor for configuration management, you must first complete Steps
1-8, as presented in the "Implementation for Source Management" and
"Implementation for Output Management" sections of this chapter. There is one more
step required for implementing Endevor for configuration management:

Step What You Do

9 Enable the Automated Configuration Manager (ACM)
capability

Chapter 3. Implementing Endevor 3-25

3.14 Step 9: Enable ACM

3.14 Step 9: Enable ACM

If you did not enable the Endevor Automated Configuration Manager (ACM) at the
end of Step 1, do so now by editing the Endevor Defaults Table.

CAUTION:
The final step in implementing for configuration management is to create the
ACM baseline. This must be done after you have loaded your inventory into
Endevor. See 3.17, “Step 11: Load the Inventory” on page 3-29 for instructions.

3-26 Implementation Guide

3.15 Final Implementation Steps

3.15 Final Implementation Steps

Here are the required final four steps for all levels. No matter which level of
implementation you have chosen, you must perform these four final steps in the
implementation process:

Step What You Do

10 Enable security for your Endevor system

11 Load inventory into Endevor

12 Train (or set up training for) the Endevor users in the
organization

13 Go into production with Endevor

Chapter 3. Implementing Endevor 3-27

3.16 Step 10: Enable Security

3.16 Step 10: Enable Security

See the Security Guide for instructions on implementing security for your Endevor
system. It is recommended that this be done now rather than earlier, so as not to
interfere with the implementation work you have been doing.

Test the security implementation across all functions and user levels, before full
implementation, to make sure it works properly.

3-28 Implementation Guide

3.17 Step 11: Load the Inventory

3.17 Step 11: Load the Inventory

Before loading the entire inventory, verify your implementation using a small subset of
the applications to be controlled.

 3.17.1 Overview

For applications that are actively changing, quiesce the change activity as close to
implementation as possible. You may want to rerun the Inventory Analyzer before
implementing Endevor, to account for any new components.

When you have completed Steps 1-10, load the inventory that you want Endevor to
manage. Run parallel tests for a week or so to make sure Endevor is functioning
correctly, then reload the inventory.

Using the Load Utility is the easiest way to load the inventory into Endevor. See the
Utilities Guide for information on the load utility.

3.17.2 Enable the ACM Baseline

If you are implementing Endevor for configuration management, you should create a
baseline component list for those inventory elements that have components.

Endevor ACM produces component lists when a Generate processor is executed
against an element. To make sure that this process does not replace existing load
modules, do the following:

■ Take the Generate processor in production and temporarily change the SYSLMOD
or other output library to DUMMY.

■ Issue a Generate action against all programs or elements that have components.

■ Change SYSLMOD back to its original value.

CAUTION:
If this is a source-management-only implementation, you may have to change
your Compile procedures to accommodate storing source under Endevor. For
example, if you have Panvalet and have used PAN#1 for retrieval prior to
compiling, you may have to change the RETRIEVE action in Endevor.

Chapter 3. Implementing Endevor 3-29

3.18 Step 12: Provide Internal Training

3.18 Step 12: Provide Internal Training

All people who will be using Endevor should be trained. Typically, end-user training
for use of basic Endevor functionality should take about two to four hours.

Training can be delivered by Computer Associates personnel, through the Computer
Associates CBT (self-training) courses, or through internal training programs.

You should also consider using the procedures you have documented during the
implementation process as the basis for a user's guide for your site.

3-30 Implementation Guide

3.19 Step 13: Go into Production

3.19 Step 13: Go into Production

As mentioned in Step 11, after initially loading your inventory into Endevor, run
Endevor in parallel with your production system for a week or so to make sure
everything is functioning as designed. Then go into production with Endevor.

You should hold a post-implementation review two to four weeks after production
cutover. Use the feedback from the review to fine-tune the Endevor implementation to
better meet the needs of the site.

Chapter 3. Implementing Endevor 3-31

3.19 Step 13: Go into Production

3-32 Implementation Guide

Appendix A. Upgrading to Endevor 4.0

Appendix A. Upgrading to Endevor 4.0 A-1

A.1 New Features

 A.1 New Features

The following describes the new features introduced for Endevor 4.0.

■ Endevor Release 4.0 is downward compatible with Endevor Release 3.9 only if no
Endevor Release 4.0-only features are implemented. See the Endevor 4.0 Release
Summary for details on all the new features.

■ Endevor control tables (such as C1DEFLTS, ENDICNFG, ENCOPTBL, and so
on) are now validated at Endevor start up to ensure that all tables are compatible
with Release 4.0.

■ A special DDNAME, EN$TROPT, causes Endevor Release 4.0 to format and print
all option table settings at Endevor start up (such as C1DEFLTS, ENDICNFG,
ENCOPTBL, and so on).

■ The Endevor Release 4.0 Element Registration feature can be activated in WARN,
CAUTION, or ERROR mode (and switched from one mode to the other at any
time). If the processor group output type registration option is activated, no
conflicts will occur because the default value for the processor group output type
(TYPE NAME+PROC GROUP NAME) is unique.

■ A new utility, BC1PXCAT, is provided to create the Endevor Release 4.0 catalog
from existing MCF control files. This is not a file conversion utility—it is a build
utility.

■ Component validation (occurs at Package CAST) logic was greatly
improved—especially in the area of diagnostic messages.

A-2 Implementation Guide

A.2 Changes for Endevor 4.0

A.2 Changes for Endevor 4.0

The following describes the changes you should know about for Endevor Release 4.0.

■ No type name changes across the map are allowed ("NEXT TYPE" name can no
longer differ from the current type name).

■ If long element names are used, the LRECL of the delta library must be at least
259.

■ ACMQ is now required if ACM is active. If ACMQ was not implemented under
Release 3.9 (or not implemented at all), the ACMQ load procedure must be
executed to populate the ACMQ repository. The C1DEFLTS ACMIDXUP
parameter was removed. The Endevor alternate ID can now be used to secure the
ACMQ VSAM linear data sets.

■ All Environments defined in an Environment Map MUST be referenced by one
Element Catalog and ONLY that Element Catalog.

Appendix A. Upgrading to Endevor 4.0 A-3

A.3 Recommendations for Endevor 4.0

A.3 Recommendations for Endevor 4.0

The following section describes recommendations for Endevor Release 4.0.

■ RLS or CA-LServ implementation is highly recommended for the Endevor
Release 4.0 Catalog data set, MCFs, and the PCF (Package Control File).

■ Due to the key structure of the catalog, it is highly recommended that element
searches are done with some kind of element and type specification (the catalog
key is element name—type name).

A-4 Implementation Guide

 Glossary

Access Security Table. Endevor table that defines the
environment(s) to which each user has access. There is
one Access Security Table for each site.

ACM. See Automated Configuration Manager (ACM).

actions. Commands used to maintain or otherwise act
against elements. See Add, Archive, Copy, Delete,
Display, Generate, List, Move, Print, Restore, Retrieve,
Signin, Transfer, and Update.

Add. An Endevor action used to place members from an
external data set under control of Endevor.

alternate ID. Facility that protects the
Endevor-controlled data sets (such as Master Control
Files, package data sets, and base and delta libraries)
from access by an individual user, while still allowing the
Endevor system to have access.

Administrator ID that has authority to the data sets. When
Endevor has to access the data sets, it takes on the
security authorization assigned to that ID.

Information is provided for the alternate ID through three
parameters in the Endevor Defaults Table: RACFGRP,
RACFPWD, and RACFUID. See the Installation Guide
for more information.

analysis utility. See Inventory Analyzer.

approval. An electronic signoff mechanism for
packages. Approval may be required for a package
before it can be executed.

approved. Status of a package after required approvers
have reviewed and signed off on a package by approving
it.

approver. A person authorized to signoff on a package
prior to execution. Signing off on a package means
reviewing the information contained in a package and
approving or denying it.

approver group. A collection of one or more approvers.
Approver groups are defined within each environment and
can be associated with particular inventory areas.

approver group relationship. The relationship
established between an approver group and one or more
inventory areas, authorizing members of that approver
group to review (then approve or deny) packages related
to those inventory areas.

approver type. Specifies the kinds of packages that an
approver group can review. When the approver type is
STANDARD, that approver group can only review
standard packages related to its authorized inventory
areas. When the approver type is EMERGENCY, that
approver group can only review emergency packages
related to its authorized inventory areas.

Archive. Action used to write an element and all related
Endevor information to a sequential data set. The DCB
must specify variable blocked records (RECFM=VB), a
minimum LRECL of 1021, DSORG=PS, and a blocksize
equal to your LRECL + 4 (minimum 1025). When
archiving to tape, the recommended blocksize is 32,000.

authorization. The ability to perform certain privileged
functions within the IBM OS/390 environment.

Automated Configuration Manager (ACM). Optional
facility that allows you to monitor selected libraries and
data sets and maintain a component list for each element
in the monitored areas. The component list provides an
audit trail of program-component information at the time
of each compile. Also called AllFusion Endevor Change
Manager Automated Configuration Option.

automatic consolidation. See consolidation.

backin. To restore the executable members of a package
to the state they were in before the package was backed
out. Reverses the backout process.

Glossary X-1

backout. To return the executable members of a
package to the state they were in prior to package
execution.

base level. When storing elements with forward deltas,
the lowest level of an element within a particular stage.
This level represents the source for the element in that
stage. If an element exists in both stages, there is a base
level in each stage.

When storing elements with reverse deltas, the base level
is the current level. See also image.

base library. Partitioned data set (PDS), an AllFusion
CA-Panvalet for OS/390 and z/OS, an AllFusion
CA-Librarian for OS/390 and z/OS, or Endevor LIB file
that stores the base members for elements defined to
Endevor. A base library is defined for each element type,
but can be shared across types. See also image library.

base member. Member in a base library. Each base
member corresponds to an element, and contains the
source for the base level of that element. Base member
names are generated internally by Endevor, and do not
correspond to the element name unless reverse delta with
non-encryption is used.

base regression. The amount (percent) by which the
statements stored in a new level of an element change the
statements stored in the base level. See also regression
percent.

batch. An IBM term referring to an environment in
which non-interactive programs are executed. In Endevor,
batch refers to the execution of actions and reports in a
non-interactive region (vs. execution in foreground).

BDT. See Bulk Data Transfer.

browse. To view the contents of a data set, without
being able to change its contents.

Bulk Data Transfer (BDT). IBM transmission utility
supported by the Endevor package shipment utility.
Abbreviated as follows when establishing destinations:

■ BDT2—for BDT Version 2

■ BDTN—for BDT vis NJE/NJI

C1DEFLTS Table. See Endevor Defaults Table.

cast a package. To freeze the actions included in a
package. A package cannot be edited after it is cast, and
only approvers can work with it.

CCID. See Change Control ID (CCID).

CCID definition data set. A data set that identifies the
CCIDs to be used within Endevor. The definition file
must be a card-image data set (80-byte, fixed-format
records).

CCID validation. Checking a CCID specified on an
action against the CCIDs defined in the CCID definition
data set.

Change Control ID (CCID). A logical grouping
mechanism by which user-specified portions of the
Endevor inventory can be tagged, then viewed, tracked,
and manipulated. The use of CCIDs is optional, but may
be required on a system-by-system basis. The same is
true of comments.

change regression. The amount (percent) by which the
statements stored in a new level change the revisions
made by the previous level. See also regression percent.

checksum. An internally calculated value within a
package. Endevor uses the checksum to determine if a
package has been changed.

command field. Field appearing in the upper-left corner
(second line) of those Endevor screens on which you can
specify a TSO command. You can enter any appropriate
TSO command in the command field.

comment. A 1- to 40-character user-defined remark
associated with an action or package, generally describing
the reason for the action or purpose of the package. Used
in conjunction with CCIDs. See also Change Control ID
(CCID).

committed. Status of a package after it has been
committed.

commit a package. To record all events related to a
given package, and remove all backin and backout
information. After a package is committed it can no
longer be backed out or backed in.

complementary data sets. Data sets that can be shipped
along with package shipments. The complementary data
sets for a given shipment contain a backout of that
shipment.

component. The output produced or input read in by a
generate or move processor. This term applies primarily
to the Endevor ACM product.

X-2 Implementation Guide

The components of a generated element include the
following:

■ The input components that were included to produce
an output of the generate processor; for example,
copybooks would be considered an input component
to a COBOL compiler.

■ The element itself.

■ All outputs created by the generate or move
processor, for example, an object deck for a COBOL
compiler.

■ The processor that generated or moved the element.

■ User-defined related data.

Components are referenced by element names (including
related Endevor location information) or member names.

component list. A list of all components created or read
by a generate or move processor. The component list can
be viewed using the Print action or through the Display
Element/Component panel. This panel is available only
with the Endevor ACM product.

The component list provides an audit trail of
program-component information at the time of each
compile.

component monitoring. Feature of ACM that allows
you to check selected data sets for component
relationships.

component validation. When casting a package,
Endevor validates that all dependent components are
present in the package and that those components have
not changed since they were last used.

configuration management. The capture and storage of
program-component relationships and the tracking of
these relationships over time.

CONNECT:Direct. Formerly known as Network
DataMover. CONNECT:Direct is a network transmission
utility provided by Sterling Commerce and supported by
the Endevor package shipment utility. Abbreviated NWD
when establishing destinations.

consolidation. Endevor facility that allows you to
specify a number of delta levels to retain when a member
reaches the consolidation level specified for its type. If
you do not specify the number of levels to retain,
Endevor consolidates all levels.

Copy. An Endevor action used to copy an element from
an archive data set to a data set external to Endevor.

copyback. To search for an element along the map,
beginning at a designated stage; find the element; then
copy it back to the initial stage. Copyback is available as
an explicit option with the Generate action. Endevor also
uses copyback when adding, transferring, and moving
elements.

create a package. To build the SCL for a package, then
associate this SCL with other package-related information
such as a package ID, an execution window, etc.

CSECT. Control section. An IBM term for that part of a
program that is a relocatable unit and for which all
components are loaded into adjoining main storage
locations.

current level. The most recent source for an element.
When using forward deltas, the current level of an
element comprises the base level plus all subsequent
change levels. When using reverse deltas, the current
level of an element is the current source.

data set mapping rule. See DSN mapping rule.

data set validation. The optional capability of verifying
that retrieved elements are added or updated from the
data set to which they were last retrieved. This ensures
that the same copy of the element (revised as appropriate)
is placed back in Endevor.

Data set validation can be specified separately by system.
If this facility is in effect for a system, you can override
it to add the element back from a different data set,
provided you have proper authority to do so.

default. A default value is the value that Endevor
assumes to be in a field or statement if the user does not
provide an alternative value. On foreground panels, fields
usually display default values.

Defaults Table. See Endevor Defaults Table.

Delete. An Endevor action used to erase base and delta
forms of an element and remove element information
from a Master Control File or a component list.

delete processor. Processor that is run when an element
is deleted from a stage. Typically, the delete processor
deletes the output created by the corresponding generate
processor. See also processors.

delta level. Record of a change to the base level of an
element. Each change to an element creates a delta level.
Endevor compares the current level to the new source and

Glossary X-3

builds a delta level containing just the changes to the
source.

delta library. Partitioned data set (PDS), an AllFusion
CA-Panvalet for OS/390 and z/OS, an AllFusion
CA-Librarian for OS/390 and z/OS, or an Endevor LIB
file that stores the delta members for elements defined to
Endevor. A delta library is defined for each element
type.

delta member. Member in a delta library. Each delta
member corresponds to an element, and contains all the
levels for that element subsequent to the base level. Delta
member names are generated internally by Endevor and
do not correspond to the element name, unless reverse
deltas are being used.

denied. Status of a package when it has been reviewed,
but denied, by an approver.

deny a package. An option for a package approver. If
one approver denies a package, it cannot be executed.

destination. Package outputs are shipped to destinations.
A destination record contains the information needed by
Endevor to ship package outputs to that destination.

Display. An Endevor action used to view environment
definitions, element information, and footprint-related
data.

DSN mapping rule. A user-defined correspondence
between host data set names and remote data set names.
DSN mapping rules are used when shipping package
outputs.

element. Partitioned data set (PDS) members, or an
AllFusion CA-Panvalet for OS/390 and z/OS, AllFusion
CA-Librarian for OS/390 and z/OS, or sequential data
sets that have been placed under control of Endevor. The
default element name is the member name. Actions are
performed against elements. Elements are identified by
the environment and stage in which they are located, and
by the system, subsystem,and type in which they are
classified.

element change. A view of element information that
shows the current level of an element, annotated to
indicate the level at which each line was added to the
source.

element component. In Endevor ACM, the part of a
component list referred to as element information. This
information includes the footprint of the Endevor source.

element history. A view of element information that
shows all lines that have ever been present in a piece of
source code, annotated to show the level at which the line
was added and/or deleted from source.

element master. A view of Master Control File
information about an element.

element name. The name assigned to an element, used
to identify that element within Endevor. It is
recommended that any outputs created by output
management be assigned the name of the corresponding
element.

Element names must be unique within each system,
subsystem, and type combination. An element name can
include any of the following characters (and only these
characters): A-Z, 0-9, @, #, and $.

element summary of levels. A summary view of
activity against an element at all levels. Information
provided includes the number of statements at each level,
the number of lines added and the number of lines
deleted.

element type. See type.

emergency approval. The kind of approval given to
emergency packages. An approver group must be given
the authority to approve emergency packages.

emergency package. One of two types of packages. A
package is identified as standard or as emergency when it
is created. Emergency packages require approval from
emergency approver groups.

enable backout. Option when creating a package. You
can decide whether or not to allow the package to be
backed out.

Endevor classification. The system, subsystem, and
type associated with an element.

Endevor Defaults Table. Table of site-specific
information necessary for Endevor operation. The
Endevor Defaults Table includes environment and stage
definitions, installed options, and site-specific hardware
settings. There is one Endevor Defaults Table for each
site.

Endevor LIB. High performance alternative to OS
partitioned data sets under Endevor. Endevor LIB data
sets do the following:

X-4 Implementation Guide

■ Reorganize member space automatically as members
are rewritten or deleted, thereby eliminating the need
to compress the data set.

■ Exploit 31-bit storage for VSAM-organized data sets,
thereby reducing 24-bit storage contention.

■ Expand directories and data sets automatically.

■ Provide improved directory processing.

■ Maintain additional statistical information about
member size.

Endevor Link. Computer Associates product that
enables communication between the Endevor Workstation
product and Endevor. Also named AllFusion Endevor
Change Manager Link Option.

Endevor listing libraries. Libraries used to store
compressed compiler listings produced by processors.

Endevor location. Refers to the stage and environment
where an element resides.

ENDEVOR return code (NDVR RC). Return code
from action processing. Values are:

■ 00—The action executes successfully.

■ 04—A warning message is issued before a processor
is invoked. This can occur, for example, when you
specify override signout on an action, or add or
update a member with no source changes.

■ 08—The regression percentage exceeds the limit
specified on a type definition, and the default severity
of C is in effect.

■ 12—The processor return code is greater than the
MAXRC for any step in a processor, or there is an
error in action processing before or after invoking a
processor.

■ 16—An abend has occurred.

Endevor symbolics. See symbolics.

environment. The top level of the logical structure used
to classify elements in Endevor. Environments usually
correspond to functional levels in an organization, for
example development, quality assurance, and production.
Each environment has two stages. There is no limit to the
number of environments you can use.

environment name. The 1- to 8-character name
assigned to each environment, used to identify that

environment within Endevor. The name can include any
of the following characters: A-Z, 0-9, @, #, and $.

environment title. The 1- to 40-character title assigned
to each environment, used in various displays and reports
to describe the environment.

ESI. See External Security Interface (ESI).

event. See package events.

execute a package. To run a package. Packages that
execute successfully can be backed out or committed.

Execution Report. Report output when you run
Endevor actions. The Execution Report documents the
actions requested and the processing that took place. The
report can be viewed on-line by browsing data sets
userid.C1TEMPR1.MSGS or userid.C1TEMPR2.MSGS.
Endevor prints the report as member C1MSGS1 on the
batch SYSOUT.

execution window. A start date and time and an end
date and time within which a package must be executed.

export a package. To copy package SCL into an
external data set.

exit. The Endevor exit interface is designed for use with
exits written in either assembler or in high-level
languages such as COBOL.

External Security Interface (ESI). Optional interface
used to implement external security at your site. If
installed, this interface replaces the native security facility
supplied on the installation tape (and implemented
through the security tables), with calls to RACF, eTrust
CA-ACF2 Security for OS/390 and z/OS, or eTrust
CA-Top Secret Security for OS/390 and z/OS. Also
named AllFusion Endevor Change Manager Interface for
External Security.

fetch. See copyback.

footprint. Encrypted data added by processors to
individual source, object, or load modules, to identify the
Endevor element associated with that module. Endevor
uses this data to display or otherwise process information
related to the element.

A footprint includes (in encrypted format) the following
information: site ID, environment name, stage number,
system name, subsystem name, element name, element
type, element version/level, and the date and time the
footprint was assigned.

Glossary X-5

foreground. An IBM term referring to an environment
in which interactive programs are executed. In Endevor,
you run actions in foreground by requesting those actions
through the Endevor Foreground Options Menu.

forward delta. A method for recording changes that
stores a base version of code, then builds current versions
by applying changes made to the base.

forward recovery. The process of taking an old level of
an element and making it the current (new) level, thereby
backing out any changes made by the levels between. To
perform forward recovery, you first retrieve the older
(to-be-recovered) level, then add or update the element
using the retrieved source to create the new level.

Generate. An Endevor action used to translate source
into executables, then populate output libraries with these
executables by executing the generate processor for an
element.

generate processor. Generate processors translate
source into executables, then populate output libraries
with these executables.

group name. Within the definition of the Access and
User Security Tables, a name associated with a particular
security configuration that applies for multiple users. The
name is then associated with any number of specific user
IDs, to associate those IDs with the group-level security.
This is a convenient way to assign security to several
users having identical levels of access to the Endevor
environment.

identify record (IDR). An IBM term for a record in a
load module that contains user-defined data. An IDR is
created by the linkage editor when it encounters an
IDENTIFY statement in the object deck. Within Endevor,
IDRs are used to store the footprint(s) associated with
load modules.

image. The current level of an element, when that
element is stored in reverse delta format, using
non-encryption. See also base level.

image library. A library that contains elements stored in
reverse delta format, using non-encryption. See also base
library.

import a package. To create a package by copying SCL
from an external data set.

INCLUDE library. AllFusion CA-Panvalet for OS/390
and z/OS library, an AllFusion CA-Librarian for OS/390

and z/OS library, or partitioned data set (PDS) that
contains INCLUDE members referenced within Endevor
elements. This library is optional and can be defined for
each element type.

The INCLUDE library is used by Retrieve actions if you
specify that you want to expand INCLUDEs at the time
the element is retrieved. It is also used by the
CONWRITE utility, if you specify that you want to
expand INCLUDEs during CONWRITE processing.

input component. When using Endevor ACM, the
components that were included to produce an output
when executing the generate or move processor. A
copybook, for example, is the input component when
compiling a COBOL program.

inventory. The software components that make up your
application software systems.

Inventory Analyzer. Computer Associates product that
allows you to analyze your software inventory, classifying
it according to Endevor types. Used when implementing
Endevor.

inventory area. A subset of a software inventory,
defined by its Endevor location (environment and stage)
and classification (system, subsystem, and type).

jump. To move an element from stage 2 in one
environment to a stage in another environment on a map
route, when a version of the element exists at an
intermediate stage that is not part of the map route.

last action. Most recent action executed for an element.
Once executed, each action is recorded as the last action
except Archive, Delete, Display, List, and Print.

last action CCID. The CCID specified for the last
action executed against an element.

level. The source for an element at a particular time.
When an element is first added to a stage there is one
level, known as the base level. Each time Endevor actions
change the source thereafter, a new—delta—level is
created. See also base level, delta level, and image.

level number. Identifier for a specific level of an
element. Endevor assigns each set of changes a level
number that is one higher than the number assigned to the
preceding level.

library management. The classification, control, and
storage of the physical components of a software
inventory.

X-6 Implementation Guide

List. An Endevor action used to list, in the form of
action requests, elements from a Master Control File or
archive data set, or members from a library. List can also
be used for text scanning.

If the Automated Configuration Manager facility is
installed, List can also search a component list based on
specified criteria.

list panel. Panel used by Endevor to display lists of
systems, subsystems, types, elements, or members; also
displays selection options for users. List panels are
prepared and processed by the ISPF Table Display
Facility.

load utility. Endevor utility used to load members from
an external data set into any stage in an environment.

location. See Endevor location.

map. The promotion routes established for software
inventory at a site. Environments and stages are mapped
to each other in the Endevor Defaults Table. Systems,
subsystems, types, and processor groups are mapped to
each other on their respective definition panels.

mapping rule. See DSN mapping rule.

Master Control File (MCF). Endevor file that contains
the definitions of stages, systems, subsystems, element
types, and elements themselves. This file is accessed and
updated by Endevor, to manage the element definitions,
to execute processors, and for other miscellaneous
functions. There are two Master Control Files (MCFs) for
each environment—one per stage.

MAXRC. A processor keyword that defines the highest
acceptable return code for a processor step. If a step
exceeds this return code, the Endevor return code (NDVR
RC) is set to 12. When this occurs the Element Master
display shows *FAILED* in the NDVR RC field.

MCF. See Master Control File (MCF).

model transmission control statements. Statements that
control the functioning of data transmission programs
used by the package shipment utility.

Move. An Endevor action used to move elements
between stages, within or across environments.

move processor. Move processors copy outputs, element
information, and component lists from the source location
to the target location of a Move or, optionally, a Transfer
action.

name mask. Name masking enables you to use the
wildcard (*) and placeholder (%) characters when
performing actions. The wildcard character enables you
to specify all names or all names beginning with a
particular search string. The placeholder character
defines a specific position within the search string. For
example, the search string UPD% would return all four
character names beginning with UPD.

native security. Security option supplied with the
Endevor installation tape. See also External Security
Interface (ESI) and security.

NDVR RC. See ENDEVOR return code (NDVR RC).

notification facility. Endevor facility that allows you to
notify users of events that require a response from them.

output component. When using Endevor ACM, the
components created as a result of executing the generate
or move processor. For example, an object deck is an
output component when compiling a COBOL program.

output library. Any of several libraries used during
output management, including the Endevor processor
listing library, processor load library, and source output
library; as well as user copy libraries, load libraries,
listing libraries, macro libraries, JCL libraries, databases,
etc.

output management. That aspect of Endevor which
deals with the creation and maintenance of various
outputs that relate to an element. The exact nature of
these outputs varies depending on the corresponding
element type, and is defined by the output management
for that type. For example, output management might
store a copy of the current source for the element in the
source output library, or it might create a load module for
the element or a listing associated with that load module.

package. A group of Endevor actions that requires
approval before it can be executed. Creating packages
allows you to do the following:

■ Group specific actions so they can be maintained and
tracked as a single unit.

■ Establish formal approval procedures to ensure data
integrity through modifications.

■ Centralize specific action groups so you can see them
across environments and reuse them.

package data set. Data set where packages are stored.
There is one package data set per environment.

Glossary X-7

package events. An audit trail recording the events that
have occurred involving a package, logged by user ID,
date, and time. Package events relate to the various steps
of the package processing procedure, and include the
following:

 ■ Created

 ■ Last Updated

 ■ Cast

 ■ Approved

 ■ Executed

 ■ Backed Out

 ■ Backed In

 ■ Committed

package exits. Exits that are called before and/or after
package functions and subfunctions. See also exit 7.

package shipment. The transmission of package
outputs, and optionally their backouts, from host sites to
remote sites.

package status. Indicates the status of a package at any
given time. Status levels for packages include the
following:

■ In-edit—A package is initially set to this status. It
can be modified only when in this status. When you
reset a package, its status is automatically set to
In-edit.

■ In-approval—When a package is cast, its status
changes to In-approval, indicating that approvers can
now review and approve or deny the package. No
editing can be done once the package is cast.

■ Denied—The status changes to Denied when an
approver denies approval of the package during
review.

■ Approved—The status changes to Approved when all
necessary approvers (required and optional) grant
approval of the package during review, and when the
quorum requirement is met for the package. A
package is also considered Approved when it has
been cast and no approvers have been identified.

■ In-execution—The status changes to In-execution
when package execution has begun.

■ Executed—When the package has been executed
successfully, its status changes to Executed.

■ Exec-failed—When the package has aborted or failed
execution, its status changes to Exec-failed.

■ Committed—When a package has been committed,
its status changes to Committed.

Endevor Parallel Development Manager (PDM).
Computer Associates product that automatically compares
and integrates three versions of source code, allowing you
to resolve conflicts resulting from concurrent development
or from applying vendor updates to applications that have
been customized in-house. Also named AllFusion
Endevor Change Manager Parallel Development Option.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members.
Each member can contain a program, part of a program,
or data.

PDM. See Endevor Parallel Development Manager
(PDM).

PDS. See partitioned data set (PDS).

Print. An Endevor action used to print element or
member information.

PROC RC. See processor return code (PROC RC).

PROC statement. A job control statement used in
catalogued or in-stream procedures. PROC statements
can be used to assign default values to symbolic
parameters contained in a procedure. A PROC statement
is also used to mark the beginning of in-stream
procedures.

processors. Processors are standard OS JCL job streams
that manipulate elements and their outputs: object
modules, load modules, listings, and the like. There are
three types of processors:

■ Generate processors translate source to executables,
then populate output libraries with these outputs.

■ Delete processors delete outputs created by generate
processors.

■ Move processors copy or regenerate outputs, element
information, and component lists from the source
location to the target location of a MOVE or,
optionally, a TRANSFER action.

Endevor supports both Endevor symbolics and
user-defined symbolics in processors. This capability
allows you to write one processor that you can use in
multiple processor groups by changing the values
assigned to one or more symbolics.

X-8 Implementation Guide

Endevor also provides a set of utilities for use when
writing processors, and supports the use of in-stream data
in processors.

See also delete processor, generate processor, and move
processor.

processor component. When using Endevor ACM, the
part of a component list that includes processor
information. This information includes the footprint of the
processor.

processor group. A processor group identifies a set of
processors for a specific element type, as well as the
default symbolic overrides for the processors' JCL. A
group can include up to three processors—one generate,
one delete, and one move processor, or any combination
thereof. (For example, you could have a group that
consisted only of a move processor and its symbolic
overrides.)

Processor groups are useful when elements of one type
require slightly different processing. For example, a site
may have programs coded in batch COBOL and CICS
COBOL. In this case, processor groups allows you to
create a single COBOL type with two processor groups,
one to handle each variation of COBOL code.

When you define a type to Endevor, you can also identify
a default processor group for that type. Using symbolics
when writing the processors for the default processor
group can allow you to use the same processors, by
changing symbolic definitions, for other processor groups
associated with this type.

processor group symbolics. Symbolics defined in
PROC statements in one or more processors in a
processor group. These symbolics and their default values
appear on the Processor Group Symbolics panel. By
modifying these default values, you can use one processor
in more than one processor group.

processor listing library. Optional library that stores
the listings output from the Computer Associates-supplied
processor named GPPROCSS.

processor load library. Endevor library that contains
the load-module form of each processor. The modules
from this library are executed when processors are
invoked.

processor output library. Library referred to in a
processor, to which that processor writes output.
Processor output libraries can be source libraries,
executable libraries, or listing libraries.

processor return code (PROC RC). Highest return
code from the execution of a processor. Set to *FAILED*
if the return code for any step in a processor exceeds the
MAXRC for the processor. Set to *PROC'D?* if the
element has not been generated after being restored or
transferred from an archive data set or added/updated.

production data set. Data set used to store production
code. This term is used in the package shipment utility to
refer to host and remote production data sets.

program pathing. Security option under RACF, eTrust
CA-ACF2 Security for OS/390 and z/OS, and eTrust
CA-Top Secret Security for OS/390 and z/OS that allows
you to restrict the data sets available to particular users,
as well as the programs and load libraries from which
those data sets can be accessed. This is not an Endevor
option, but is specific to RACF, eTrust CA-ACF2
Security for OS/390 and z/OS, and eTrust CA-Top Secret
Security for OS/390 and z/OS.

promote. To move an element from one inventory area
to another inventory area.

promotion management. The task of coordinating and
validating successive changes to the various inventory
areas in a software development setting.

quorum (quorum size). The minimum number of
approvers whose approval is required in order to execute
a package. When a quorum size is indicated, at least that
many approvers must review and approve a package.

regression. Term that refers to the condition where one
set of changes to element source is overwritten by a
subsequent set of changes. Endevor flags regression when
the changes stored for a specific level of an element
overwrite more than a predefined percentage of the
element statements. See also regression percent.

regression percent. A percent of acceptable change to
element source, defined for each element type. This is a
percentage that, if exceeded, results in a user specifiable
Endevor return code (0, 4, 8, or 12).

Each time a new level is created for an element, Endevor
checks the changes stored in that level against this
percent, both in terms of change to the statements stored
for the base level (known as base regression) and change
to the statements stored for the previous level (known as
change regression). If the amount of change in either case
exceeds the defined percent, Endevor issues a message of
user-defined severity.

Glossary X-9

Reload Utility. The Reload utility allows you to recover
an Endevor VSAM control file (Master Control File,
package data set) or a base/delta data set that was lost as
a result of a physical device failure or site disaster. The
RELOAD action restores data from data sets created by
the unload process.

remote footprint synchronization. Procedure in which
footprinted executables are shipped from a remote site to
a host site, where footprint reports are run to compare the
executables' footprints with host Master Control File
information.

remote nodename. Part of a package shipment
destination. Identifies the site to which package outputs
are to be shipped. The name must be valid for the chosen
data transmission program.

request data set. Data set that contains action requests
to be submitted for batch processing. You create request
data sets in foreground, using the SCL Generation
facility.

request for data. Package exit capability, allowing
package exit programs to make multiple, successive
requests for Endevor information on a single invocation
of the exit.

reset a package. To erase all package event records,
returning the package to In-edit status.

Resource Security Table. Endevor table defining those
element names that are restricted to a particular system(s)
and subsystem(s), within a specific environment. The
Resource Security Table is defined by the Endevor
administrator, using the CONSDEF macro. There can be
at most one Resource Security Table for each Endevor
environment.

Restore. An Endevor action used to restore an element
to Endevor from an archive data set.

Retrieve. An Endevor action used to copy any level of
an element to an external data set.

return code. See ENDEVOR return code (NDVR RC) or
processor return code (PROC RC).

reverse delta. A method for recording changes that
stores the most recent version of the code, rebuilding
prior versions by backing out individual changes from the
current version.

review a package. To review the contents of a package.
After reviewing a package an approver either approves or
denies the package.

route. A series of environment and stage locations that
make up the stages in a software life cycle. Taken
together, all the routes at a site constitute the map for that
site. See also map.

SCL. See Software Control Language (SCL).

security. Endevor feature that allows you to restrict
action requests and access to elements. The security
system supplied with Endevor, known as native security,
is implemented using three tables. See also Access
Security Table, Resource Security Table, External Security
Interface (ESI), and User Security Table.

sharable. Characteristic of a package. A sharable
package can be edited by people who did not create the
package.

ship utility. Endevor utility that allows you to ship
package outputs to remote sites.

shipment confirmation. Confirmation occurs at two
points in a package shipment:

■ After execution of the data transmission utility.

■ After execution of the remote copy/delete job step.

shipment staging. Creation and population of host
staging data sets with package outputs or backout
members.

Signin. An Endevor action used to remove the current
signout for an element. Signin can be implicit or explicit.

signout. The assignment of a user ID to an element,
establishing ownership of that element. Signout is
automatic when adding or updating elements in or when
retrieving elements from Endevor.

site. Location at which Endevor is installed. The site is
defined in the Endevor Defaults Table, where it is
assigned a site ID.

SMF records. Records written out if SMF recording is
in effect, to document various Endevor processing, as
follows:

■ An Action Record is written out at the end of (any)
action processing.

X-10 Implementation Guide

■ A Security Record is written out for each security
violation (or each error returned from the security
exit, 01).

SMF interface. Optional interface to IBM's System
Management Facilities (SMF) that allows you to record
historical information through SMF records (called Action
Records or Security Records in Endevor). This
information is used to generate Historical Reports.

The implementation of the SMF interface is optional at
each site. The recording of historical information is
optional within each environment.

Software Control Language (SCL). Endevor language
used in batch to maintain or otherwise act against
elements within Endevor.

software distribution. The automated distribution and
synchronization of software changes and the tracking of
the implementation of those changes.

software life cycle. The stages through which software
passes at a site during the development and maintenance
process. A software life cycle might consist of
development, testing, quality assurance, and production.

software management. The process of tracking changes
to software components and their interrelationships over
time. Includes configuration management, library
management, software distribution, and version control.

source. The non-executable form of an element.

source library. Any of several libraries used during
source management, including Endevor base libraries,
delta libraries, and INCLUDE libraries.

source management. The aspect of Endevor that deals
with the creation and maintenance of element source.
Element source is maintained in base and delta libraries,
in either an internal format or in standard IBM format (if
reverse deltas and non-encryption are selected).

source output library. Endevor library that contains the
latest full source version of each element. This library is
designed for use with copybooks, macros, procedures,
etc., that are copied elsewhere. This library is optional
but, if used, is specified in the definition of the
corresponding element type.

stage. A stage in the software life cycle. There are two
stages defined for each Endevor environment.

stage ID. Identifier for the stage, used during processing
to select (identify) the stage you want to process.

stage name. Name assigned to each stage during
installation. A stage name can include any (and only) the
following characters: A-Z, 0-9, @, #, and $.

stage number. Relative number for the stage within the
environment: 1 or 2.

stage title. The 1- to 20-character title assigned to each
stage, used in displays and reports to describe the stage.

standard approval. One of two types of package
approval. Standard packages can only be approved by
standard approver groups.

standard package. One of two types of packages. A
package is identified as standard or as emergency when it
is created. Standard packages require approval from
standard approver groups.

subsystem. Part of the Endevor classification of an
element. Subsystems are used for specific applications
within a system. For example, there might be a purchase
order subsystem and an accounts payable subsystem
within the financial system.

symbolics. Endevor supports two kinds of symbolics in
processors:

■ Endevor symbolics. Any of several names, preceded
by &C1, that are used within Endevor processors to
represent a value specific to an individual run of the
processor. Values are assigned to Endevor symbolics
when the processor is executed.

■ User symbolics. Defined by users in JCL PROC
statements in processors. Allow one processor to be
used in multiple processor groups. See also
processors and processor group.

synchronize. When transferring or moving with history,
if the current level of the target does not match any level
of the source, a synchronize conflict is detected. Endevor
searches for the level of the target to match a level of the
source; this level becomes the synchronization level.
When there is a synchronize conflict, Endevor does not
allow the element to be transferred or moved unless the
synchronization flag (SYNC option) is set to Y
(SYNC=Y).

The SYNC option tells Endevor to create a sync level at
the target that reflects the differences. All levels after the
sync level (the change history) associated with the FROM

Glossary X-11

location element are then appended to the TO location
element and renumbered.

system. A means of classifying elements within
Endevor. A system typically represents the applications at
a site. For example, there might be financial and
manufacturing applications. A system must be defined to
each environment where it will be used.

Transfer. An Endevor action used to transport elements
from a source location to a target location. Each location
can be either an Endevor location or an archive data set.

transmission method. Part of package shipment
destinations. Identifies the transmission utility to be used
to ship packages to the destination. See also Tivoli
NetView File Transfer Program (FTP), Bulk Data
Transfer (BDT), and CONNECT:Direct.

transportable footprints. Endevor footprints that can be
imbedded in DOS/VSE- and VM/CMS-bound object
modules, using an OS/390 compiler, a DOS/VSE
compiler, or a VM/CMS compiler. (See the
Administration Guide for complete information.)

type. A category of source code used as part of the
classification of an element in Endevor. For example,
there might be the following types: COBOL (for COBOL
code); COPYBOOK (for copybooks); JCL (for JCL
streams).

type processing sequence. Relative sequence of
processing for the element types defined to each system.
By defining a processing sequence, you could ensure, for
example, that copybooks (type COPYBOOK) are updated
before any COBOL programs (type COB) that might use
those copybooks.

The Unload utility unloads and validates the contents of
the VSAM Master Control File(s), base and delta files
associated with the environments and systems specified
on the job request. The file created by the Unload
function contains a backup of all internal MCF definitions
(system, subsystem, type, type sequence, data set, element
master record) and base/delta data (element base, element
delta, component base, component delta). Packages
contained within a package data set can also be unloaded.

Unload utility. The Unload utility may be run for an
entire environment or for selected systems within an

environment. Unload may also be directed to backup an
entire package data set or individual packages.

Update. An Endevor action used to add a member to
Endevor when an element with the same name is located
in the target Stage 1.

user exit table. Table identifying exit programs to be
called at each Endevor exit point.

user ID. For actions run in foreground, the TSO user ID
for the session. For actions run in batch, the job name or
the ID specified through the USER= parameter on the job
card, depending on how your Endevor Defaults Table is
set up.

user menu facility. The user menu facility allows the
Endevor administrator to attach user-defined functions to
the Endevor TSO/ISPF front end.

User Security Table. Endevor table that defines the
systems and subsystems to which each user has access,
and for each system/subsystem, the type of processing
(authorization level) allowed. There is one User Security
Table for each environment.

user symbolics. See symbolics.

Validate. The Validate function allows you to ensure
the integrity of one or more existing Endevor
environments and systems, and their related elements and
components. These are the same checks performed as part
of Unload processing, allowing this function to operate in
a stand-alone mode.

version. Two-digit version identifier associated with an
element. Two versions of an element are not allowed in
the same environment.

version control. The maintenance, tracking, and
auditing of modifications to an application over time,
allowing prior development versions to be restored.

version number. Identifier for the version assigned to
an element.

vv.ll. Identifier that refers to a particular version (vv)
and level (ll) of element source.

X-12 Implementation Guide

 Index

A
Actions list of availability 1-16
Activating security 1-19
Alternatives for implementation 3-3
Analyzing inventory 3-9
Approval systems

replacing or upgrading existing system 3-18
Automated Configuration Management (ACM) 3-16
Automated Configuration Manager (ACM)

baseline creation 3-26

B
Backup and recovery procedures 3-16
Base libraries 3-14
Baseline creation of Automated Configuration Manager

(ACM) 3-26

C
Change Control Identifiers (CCIDs)

allocating and identifying 3-17
Configuration management 1-4, 3-25
Conventions

naming of base/delta libraries 3-13
type naming 3-11

D
Data sets

estimating size 3-14
Defining

allocation of a package data set 3-18
environments 3-5
JCL streams 3-23
libraries using symbolics 3-13
logical structure 3-10
map 3-6
master control files 3-7

Defining (continued)
physical structure 3-13
processors 3-23
software life cycle 3-5
stage 1-9
subsystem 1-9
subsystems 3-11
systems 1-9, 3-11
types 3-11

Definition verification 3-12
Delta libraries 3-14

E
Elements 3-15
Emergency or quick fix procedures 3-7
Enabling

package processing 3-18
security 3-27

Endevor
definition, uses, and functionality 1-2
going into production 3-31
normal change procedures (figure) 1-6
organizational implementation 2-3

Environment
checking implementation 3-8
definition 3-5
development and production 1-8

Executing commands (tables) 1-16

F
Footprints 1-18
Forward delta format 3-15

I
Implementation

alternatives 3-3
creating the ACM baseline 3-26

Index X-13

Implementation (continued)
environment checklist 3-8
for an inventory structure (table) 1-13
for source management 3-4
for source, output, or configuration management 1-4
momentum 2-11
process 3-27
sample processors 3-23
strategies 2-7
team selection 2-5

Integration of stage operations 1-7
Internal training 3-30
Inventory 3-29

analysis 3-9
loading 3-27
structure (table) 1-13

J
JCL streams

definition 3-23
Job function actions 1-17

L
Library

definition, allocation, and organization by
symbolics 1-13

Life cycle development by normal procedure 3-6
Logical structure

definition 3-10
LRECL settings for base and delta libraries 3-16

M
Managing the software life cycle 1-8
Map 3-6, 3-7
Master control files definition 3-7

N
Naming Conventions

for base/delta libraries 3-13
for output libraries 3-21

O
Online and batch processing 3-10
Organizational change

planning 2-3
Output libraries 3-21

Output management 1-4

P
Package data set

definition, allocation,and processing 3-18
usage 1-18

Parallel development mapping 3-7
Physical structure definition 3-13
Pilot application 2-10
Post-presentation feedback and education 2-9
Procedures for backup and recovery 3-16
Processors 1-18, 3-23

R
Reverse delta format 3-15

S
Security

data set and functional security 1-19
enabling 3-27

Software life cycle 1-5
definition 3-5

Source management 1-4
implementation 3-4

Stage 1-9
Stages for Endevor control 3-5
Structure for classification of software 1-8
Subsystem

creation requirements 1-9
Symbolics

defining Endevor libraries 3-13
Systems

profile (CONRPTO7) 3-12

T
Training, internally 3-30
Type

naming conventions 3-11

U
Using sample processors for implementation 3-23

V
Verifying definitions 3-12

X-14 Implementation Guide

	Bookshelf
	Implementation Guide
	Contents
	Chapter 1. Basic Concepts
	1.1 Overview
	1.1.1 What is Endevor
	1.1.2 What Can You Do with Endevor?

	1.2 Implementing for Source, Output, or Configuration Management
	1.3 The Software Life Cycle
	1.3.1 The Endevor Life Cycle
	1.3.2 Life Cycle Requirements
	1.3.3 The Endevor Sample Application
	1.3.4 Basic Operations
	1.3.5 Integration Stage Operations

	1.4 Endevor Logical Structure
	1.4.1 Using the Inventory Structure
	1.4.2 Environment
	1.4.3 Stage
	1.4.4 System
	1.4.5 Subsystem
	1.4.6 Type
	1.4.7 Element
	1.4.8 Element Classification
	1.4.9 More About Elements

	1.5 Endevor Libraries
	1.5.1 Where to Allocate Your Libraries

	1.6 Working with Elements
	1.6.1 Endevor Actions and Availability
	1.6.2 Actions by Job Function
	1.6.3 Creating Executable Forms of Elements
	1.6.4 Correlating Source with Executables
	1.6.5 Packages

	1.7 Security
	1.7.1 Data Set Security
	1.7.2 Functional Security

	Chapter 2. Implementation and the Organization
	2.1 Overview
	2.2 Organizational Considerations
	2.2.1 Accessing Receptiveness to Change
	2.2.2 Developing a Strategy

	2.3 Selecting an Implementation Team
	2.3.1 Required Technical Knowledge
	2.3.2 Required Organizational Involvement
	2.3.3 Public Relations Requirements

	2.4 Laying the Groundwork
	2.4.1 Prepare a Presentation
	2.4.2 Tailor the Presentation

	2.5 Make the Presentation
	2.5.1 Introducing Endevor to an Organization
	2.5.2 After the Presentation

	2.6 Using a Pilot Application
	2.6.1 Characteristics of the Pilot Application

	2.7 Building Momentum
	2.8 Summary

	Chapter 3. Implementing Endevor
	3.1 Overview
	3.1.1 Endevor Implementations
	3.1.2 Assumptions
	3.1.3 The Software Life Cycle

	3.2 Implementation Alternatives
	3.2.1 A Phased Implementation
	3.2.2 A Full Implementation

	3.3 Implementing for Source Management
	3.3.1 What's Involved?

	3.4 Step 1: Define Your Software Life Cycle
	3.4.1 Decide Stages for Endevor Control
	3.4.2 Define Environments
	3.4.3 Define the Map
	3.4.4 " Normal" Development Procedure
	3.4.5 Quick Fix or Emergency Procedure
	3.4.6 Mapping for Parallel Development
	3.4.7 Define Master Control Files
	3.4.8 Environment Implementation Checklist

	3.5 Step 2: Analyze the Inventory
	3.6 Step 3: Define the Logical Structure
	3.6.1 Implement the Logical Structure
	3.6.2 Define Systems
	3.6.3 Define Subsystems
	3.6.4 Define Types
	3.6.5 Type Naming Conventions
	3.6.6 Verifying the Definitions

	3.7 Step 4: Define the Physical Structure
	3.7.1 Naming Conventions
	3.7.2 Using Symbolics to Define Endevor Libraries
	3.7.3 Occurrence
	3.7.4 Sizing
	3.7.5 Format
	3.7.6 Element Storage Formats
	3.7.7 Where Libraries Are Defined
	3.7.8 More About Base and Delta Libraries
	3.7.9 Backup and Recovery

	3.8 Step 5: Define CCIDs (Optional)
	3.8.1 CCID Definition Data Set

	3.9 Step 6: Enable Package Processing
	3.9.1 Set Up a Naming System
	3.9.2 Define and Allocate a Package Data Set
	3.9.3 Enable Component Validation
	3.9.4 Approver Groups
	3.9.5 What to Do Next

	3.10 Implementing for Output Management
	3.11 Step 7: Define and Allocate Output Libraries
	3.11.1 Output Library Information
	3.11.2 More About Output Libraries
	3.11.3 Output Library Allocation

	3.12 Step 8: Define Processors
	3.12.1 Writing Processors
	3.12.2 Processor Groups and Types
	3.12.3 Managing Processors
	3.12.4 Determining Type Processing Sequence
	3.12.5 Sample Processors
	3.12.6 What to Do Next

	3.13 Implementing for Configuration Management
	3.14 Step 9: Enable ACM
	3.15 Final Implementation Steps
	3.16 Step 10: Enable Security
	3.17 Step 11: Load the Inventory
	3.17.1 Overview
	3.17.2 Enable the ACM Baseline

	3.18 Step 12: Provide Internal Training
	3.19 Step 13: Go into Production

	Appendix A. Upgrading to Endevor 4.0
	A. 1 New Features
	A. 2 Changes for Endevor 4.0
	A. 3 Recommendations for Endevor 4.0

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

